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INTRODUCTION 
 
Real-time damping control of automotive suspension systems can reduce the low frequency 
vehicle body motions while enhancing the vehicle road holding characteristics. Other 
benefits of semi-active suspension systems having controllable damping are: reduced 
hardness from high frequency road disturbances (for a smoother ride) and better handling 
during transient maneuvers. The work presented in this paper was carried out with the 
purpose of making a theoretical study of the dynamic behavior of a 2DOF system using 
smart fluids [1]-[2] called Magneto-Rheological (MR). We considered the MR fluids which  
produce superior effects at voltages well below 12V and hence are more preferable for 
automotive use then the ER fluids which require very high electrical fields (on the order of 
5kV/mm) to produce the desired effects. The Magneto-Rheological (MR) fluids are a class 
of controllable fluids having micrometer-sized magnetizable solids dispersed in a non-
magnetic fluid such as synthetic mineral oil. The MR fluids are freely flowing in the 
absence of a magnetic field but they are changing into a paste-like substance in the presence 
of a magnetic field in a quick and completely reversible manner. The yield strength of a MR 
fluid can be continuously controlled by the applied magnetic field with response times in the 
range of milliseconds. This feature paved the way for the MR fluids as simple interfaces 
between mechanical systems and electronic controllers for fast, controllable actuators 
having valves without moving parts, especially in controllable dampers used in detail in the 
Magnetic Ride Control system.  
 
2. MATHEMATICAL MODEL 
 
Figure 1 shows a sketch of a 2DOF system used for this study  

 

Figure 1: A schematic view of a shock absorber for a 2DOF system 
                                                 

1 Corresponding author e-mail: barbaraci@dima.unipa.it , Universitè di Palermo, 
Dipartimento di Meccanica, Viale delle Scienze, 90128 Palermo, Italy 
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What is established due to the displacement along a positive direction 1x  is the sum of a 
reaction force acting in the sprung mass according to which it has its motion equation (1). 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 2 1 2, , 0MRm x t c T x t k x t c T x t k x t Fφ φ+ + − − − =&& & &   (1) 
 
The same procedure is applied to the unsprung mass owing to which it has (2) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 1 2 1 1 1 2, , 0MRm x t c T x t k x t c T x t k x t k y t Fφ φ+ + − − − + =&& & &  (2) 
 

where ( ),c Tφ  represents the damping constant varying with temperature and iron fraction 
particle volume of a fluid. 
Both equations are shown in the following matrix form (3): 
 

( ) ( ) ( ) ( ) ( ), MRt T t t F w tφ+ + + + =Mq C q Kq b g 0&& &     (3) 
 
where 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1 1 1

2 1 1 2 2

1 2

, ,0 01
; , ; ; ;

, ,0 1

T

c T c Tm k k
T

c T c Tm k k k k

t x t x t

φ φ
φ

φ φ
⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤

= = = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − + −−⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤=⎣ ⎦

M C K b g

q

 

 
Carrying out a change of the variable we put: 
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in order to obtain the state space model (4): 
 

( ) ( ) ( )MRt t F w t= + +z zz Az b g&       (4) 
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3. ACTUATOR 
 
The figure 2 shows the cross section of the comprehensive electromagnet coil in the 
hypothesis that this last one has a  square section. 
 

 
 

Figure 2: A cross of the section of actuator and coil 
 
The mechatronic system that allows generating a damping force varying of the magnetic 
field at first depends on the circulation ampere’s law (5): 
 

0
0 0

0 0

2 i
i i

i i r i

l lN I H l H l
S Sμ μ

⎛ ⎞
= + = Φ +⎜ ⎟

⎝ ⎠
∑ ∑                     (5) 

 

where 0 and il l  are the length of a circulation in the gap and the iron space respectively, 

while 0 e iS S  are the cross section of the magnetic flow which in this case is the same as in 
the empty space or  as in the iron one because of a small gap. 
Since the reluctance in the iron is negligible with regard to the empty one (μr«μ0) [3]-[4], we 
considered only the addend of the second member shown in an integral form such as (6), [5]: 
 

ˆ ˆ CH n dl J n dA⋅ = ⋅∫ ∫
r r

          (6) 
 

where CA  is the coil cross section. The last step to carry out  is to calculate the cross section 
of the polar expansion relative to the electromagnet. The realized magnetic field 
B
r

obviously depends on the induction magnetic field H
r

 through the iron fraction particle 
volume of a fluid, [6]: 
 

( ) 010.971.133
01.91 1 HB H e Hμφ μ− ⋅ ⋅⎡ ⎤= ⋅ ⋅ − + ⋅⎣ ⎦                      (7) 

 
the pathway of which is calculated by varying the iron particle fraction and induction 
magnetic field as shown in the figure 3. 
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Figure 3: A magnetic field B versus and Hφ  
 

As we can see from the figure 3, the magnetic field increases with the increase of φ  and of 
the induction magnetic field H  as well. The yield strength equation (8), [6]: 
 

( )1.5239 6271700 6.33 10s fY C Tanh Hφ −= ⋅ ⋅ ⋅ × ⋅       (8) 
 
assumes the same behavior although what must be taken into account is another parameter 

called a carrier fluid constant fC [6]. The figures 4 and 5 show the pathway of the yield 
strength varying with the magnetic field H in the two distinguished cases. 

 

 
 

Figure 4: The yield strength versus H varying carrier fluid constant fC and fixed 0.1.φ =  
 

What is shown in the figure 4 is the variation with the carrier fluid constant at 10%φ = . A 

small variation of ( ),fY C HS φ=10%  can be seen there with regard to  ( ),Y Hφ
f

S C =0.95  
whose data are plotted in the figure 5. 
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Figure 5: The yield strength versus H varying the carrier fluid constant φ  and fixed 
0.95fC =  

 

A similar behavior has ( ),c Tφ  whereas φ  and temperature T are changing. It depends on 
the dynamic viscosity as it is shown in (8), [7]: 
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−
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whose a 3D plot is shown in the figure (6). We can see that ( ),Tη φ decreases with the 

increase of the temperature and while it increases with the increase of φ  once T is fixed. In 

this application we fixed the iron fraction particle volume at the value 0.4φ =  in order to 

have ( ),Tη φ  as it is shown in the figure (7): 
 

 
 

Figure 6: The dynamic viscosity η  versus and Tφ . 
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Figure 7: The dynamic viscosity ( , )Tη φ  versus T  
 

The equations (9), (10), (11) and (12) are the electromechanical relations through which the 
proportions of the magnetorheological damper have been determined. The force generated 
from the passive system turns out from the expression (9) from which the damping constant 
is extrapolated (10) and where V  represents the relative speed between the sprung and 
unsprung mass, while (11) is the one relative to the MRF. The following represents the coil 
cross section whose axial dimension is equal to the square root of (12):  
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( ) ( )02 2 2y s s pistonF H Y S Y d rπ⎡ ⎤= = ⎣ ⎦       (11) 
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A short parenthesis must be opened for the meaning of the optimal damping constant. This 
term refers to the damping constant that must be realized at the minimum of the maximum 
acceleration of a system during its oscillation. It is equal to 

( )
1 2

2
1 2
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k k

c T
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φ = °
=

⎛ ⎞
⎜ ⎟+⎝ ⎠=   according to which the dynamic behavior response is 

characterized in a transient condition [8]. 
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The cross section of the coil has been chosen in correspondence to the point of maximum 
magnetic permeability whereas this value is the one corresponding to the error of 10% 
between the linear and real pathway of the first magnetization curve. What has been said is 
on the Table 1 which leads to the Table 2 regarding the geometry of the electromagnet. 
 
Table 1: Initial data for electromagnet design 

Symbol Quantity Values (SI) 

pr  piston radius 0.03 m 

rr  rod radius 0.004 m 

mr  mean radius 0.017 m 

pA  piston area 0.0028 m2 

rA  rod area 5×10-5 m2 

gL  gap 1×10-3 m 

T  design temperature +40 °C 
k  Intrinsic viscosity 0.2750 Ns/m2 

0η  dynamic viscosity at design temperature   0.0251 Ns/m2 

φ  design fraction volume of iron particles 40 % 

maxφ  maximum fraction volume of iron particles 0.45 % 

α  temperature coefficient 0.005 °C-1 

yieldF  design yield stress force in linearity range 100 N 

fC  carrier fluid costant 0.95 

( ),c Tφ  optimal damping costant  1000 N s/m 

H  magnetic field 17840 A/m 
J  density current  106  A/m2 

cf  copper winding factor 50 % 
 

 
Table 2: Final  data for electromagnet design 

Symbol Quantity Values (SI) 

yieldτ  yield stress  7184 N 

d  pole thickness  0.037 m 

0(2 )poleA S  pole expansion surface 0.014 m2 

a  piston axial dimension 0.0352 m 

cA  coil cross section 7.13×10-5m2 

b  Axial dimension of coil winding 0.0084 m  
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Once the data showed in the Table 2 are obtained, we have analyzed the plot of 

( )
0.4

,dC c T
φ

φ
=

=  varying with temperature as it is shown in the figure (8): 

 

 
 

Figure 8: The damping constant dC  versus T  once fixed 0.4φ =  with the optimal one 
which is shown as well 

 

The figure (9) shows that ( )
0.4

,c T
φ

φ
=  has a similar pathway of dynamic viscosity. This 

leads to a different dynamic behavior of the system varying with temperature. What has 
been said before is shown by plotting the real and imaginary part of eigenvalues produced 
by the dynamic matrix A of the system (4) varying the temperature in a range 

20 130T C− ≤ ≤ ° . 
 

 
 

Figure 9: The real and imaginary part of eigenvalues of the dynamic system varying with 
temperature 
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We asked ourselves if the introduction of the MRF technology could recover the optimal 
damping constant varying with temperature. We know that in the optimal conditions and 
without the introduction of the MRF force, the expression of the force turns out from (13): 
 

( ) ( ) ( ) ( ). . . 40
0.4

, ,tot opt pass opt T CF F T c T V
φ

φ φ = °
=

= = ⋅      (13) 

 

If we assume an increase of the temperature beginning from 40T C= °  then the damping 
constant will decrease from the optimal value. Since the presence of the MRF involves an 
increase of the fluid viscosity, we can compensate the loss of a damping effect by means of 
the induction magnetic field H in the range 40T C> ° . 
 
Because of the presence of the magnetorheological fluid, this contribution must be added to 
the (13) in order to obtain (14), so that the same reaction force could be realized in the 
optimal conditions. 
 

( ) ( ) ( ).. , ,MRF passtot optF F H F Tφ φ= +       (14) 
 
where  
 

( ) ( )1.5239 6, 271700 tanh 6.33 10MRF f poleF H C A Hφ φ −= ⋅ ⋅ ⋅ ⋅ × ⋅    (15) 

 

( ) ( ). , ,passF T c T Vφ φ= ⋅        (16) 

 

From (14) we obtain the expression of the magnetic field H
r

 inorder to compensate 

decreasing of the damping constant, taking into account that with the  increase of the  

temperature (14) must be verified.   

 

By manipulating (14), (15),  and (16) the value of the magnetic field is obtained (17): 
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in order to induce a recovery of the optimal damping constant during the increase of the 

temperature ranging from 40T C> °  as a state feedback of the reduced order (in the sense 

that only the speed value is considered whereas the state vector contains displacements as 

well) such as to provide a time variant control signal with temperature. 

 
The expression of the force generated to do what has been said so far (18): 
 

( ) ( ) ( )( ) ( )6
. , , tanh 6.33 10 , ,f ptot optF C A H T V c T Vβ φ φ−= ⋅ × ⋅ + ⋅   (18) 

 
where  
 

( ) 1.5239, , 271700f p f poleC A C Aβ φ φ= ⋅ ⋅ ⋅                   (19) 

 
The magnetic field which provides the results presented above is dependent on the relative 
speed value of the unsprung mass with the once fixed temperature, as it is shown in the 
figure 10: 
 

 
 

Figure10: The force generated by the MRF to recover the optimal damping constant 
varying with temperature 

 
Once the temperature is fixed, as it is shown in the figure 10, we can see how to realize the 
compensation effect in order to recover the optimal damping constant. The electromagnets 
have to produce a magnetic induction field increasing the speed of the unsprung mass. This 
is a great problem because of the thermal limitation due to the copper wire whose 
electromagnets are built up. In fact, what we can also see from the figure is  that, at very 
small speed, the value corresponds to the high induction magnetic field. However, if a 
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compensation effect was feasible we would obtain a constant dynamic behavior varying 
with temperature.  
The compensation of the optimal damping constant leads the system to have the same 
dynamic behavior varying with temperature as we can see from the plotting of the real and 
imaginary part of eigenvalues,as it is shown in the figure 11. 
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Figure 11: The real and imaginary part of eigenvalues of a dynamic system with 
 the MRF varying with temperature 

 
As we can see from the figure 11 the real and imaginary part of eigenvalues of the system 
are constant. This means that the equations of motion are characterized by the same linear 
combination of natural vibration varying with temperature for 40T C> ° .  
 
4. SIMULATIONS AND RESULTS 
 
All simulations were performed by Simulink, a package of MATLAB. The figure (12) 
shows the block scheme through which simulations were performed while varying with 
temperature. Each block contains a sub-block, as it is shown in the figure (13), in which 
there is the dynamic system presented.  

In this case they are considered within the blocks at 40 , 80 ,T C T C= ° = °  and 
130T C= °  as a specified range of the temperature where the compensation is possible for 

our study. By simulating the system with a step input with the amplitude of  0.02n m=  at 

2t s=  in a simulation for [ ]0, 4t s∈
, see the figure (13-left),  we can see that the 

overshoot increases by increasing of temperature, see the figure (13-right). This leads to a 
general modification of transient response in terms of settling times.   
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Figure 12: A block scheme of the dynamic system with the MRF varying with temperature 
 

0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

T [s] = Time

Z u 
[m

]

Displacements vs time of unsprung mass varying temperature

2.02 2.025 2.03 2.035 2.04
0.021

0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

T [s] = Time

Z u 
[m

]

Displacements vs time of unsprung mass varying temperature

 

 

T=40°C
T=80°C
T=130°C

 
 

Figure 13: Displacements of the unsprung mass without MRF varying with temperature 
 

By the introduction of MRF technology for example in the system having temperature 
80T C= ° , there is a small variation in a dynamic behavior. The figure (14-left ) shows a 

simulation during which the system is analyzed in the case it has a temperature 
40 , 80 ,T C T C= ° = °  and 80T C= °  with the MRF compensation. From the figure 

14-right we can see how the introduction of the compensation effect reduces the overshoot 
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corresponding to the simulation at 80T C= °  well below than the one at temperature 
40T C= °   
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Figure 14:  Displacements of  the unsprung mass with the MRF compensation varying with 
temperature 

 
5. CONCLUSIONS 

 

After a short introduction to magnetorheological fluids and their advantages as for the power 

supplied with regard to the electrorheological ones, we have analyzed the behavior of the 

magnetic field ( ),B H φ
r r

 and ( )yield strengthYS  whereas ( ),Y Hφ
f

S C =0.95  makes 

higher contributions than ( ),fY C HS φ=10% . According to the analysis of dynamic 

viscosity, which decreases with the increase of the temperature, it was seen that the optimal 

damping constant is not held in such a manner to induce a higher oscillation of the unsprung 

mass in transient response. The oscillations are characterized by the overshoot which 

increases with the increase of the temperature because of decreasing of the damping 

constant. We have also seen that in the case of the real yield strength expression, obtaining a 

gain as independent on the unsprung mass speed is not feasible. However, if a nonlinear 

expression is used, there would be a great value of the induction magnetic field in a range of 
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the speed where another contribution to the increase of the temperature is a joule dissipation 

effect. This leads to a higher and more complicated design of the electromagnet because it 

has to support high values of the induction magnetic field and produce low dissipation of 

thermal energy.        

 
Moreover, decreasing of the damping constant was compensated by the introduction of a 
magnetic field whose value was considered in a range of a linear response of the yield 
strength produced by the actuator in order to obtain an equivalent damping constant 

( ),Hc Tφ . This constant represents a gain to generate a control signal by a state feedback 
of a reduced order which can maintain the same transient response within a range of the 
unsprung mass speed with the once fixed temperature. The future development will deal 
with the influence of this study upon the lateral dynamic behavior due to the force 
developed in a full car during turning and maneuvering whereas the centrifugal force 
produces such a virtual increasing and decreasing of the sprung mass to modify the optimal 
damping constant  for the inner and outside part of a vehicle respectively. 
 
LIST OF SYMBOLS 
 

1m      Sprung mass 

2m      Unsprung mass 

1x      Degree of freedom of the sprung mass 

2x      Degree of freedom of the unsprung mass 
w      Road noise pattern 

1k      Suspension stiffness 

2k      Tire stiffness 
T      Temperature 

( ),c Tφ
      Suspension dumping versus temperature 

MRF      Magnetic-Ride force 
φ        Fraction volume of iron particles 

maxφ        Max fraction volume of iron particles 

fC
     Carrier fluid constant 

k       Intrinsic viscosity 
a     Axial length of the electromagnet 
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gL
     gap 

M      Mass matrix 

( ),TφC
    Damping matrix 

K      Stiffness matrix 
A      Matrix of dynamic 

b      Vector for the sign of MRF  
g      Noise tire stiffness vector   
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