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INTRODUCTION 

 

Kinematical structure of the vehicle independent suspension with increased speeds of 

motion have been refined over time and today there are a large number of its variants - 

single, double, and more arm suspensions. Underlying all these are single arm suspensions 

[6]. 

 

The aim of this work is using the methods of vector mechanics to analyze the results for 

both types of suspensions for the generalization of the computing process, which form the 

basis of an automated computer program to select the elastic characteristics of the 

suspension. Numerical experiments are conduct with MATLAB. 

 

THREE-DIMENSIONAL MATHEMATICAL MODELS OF ARM SUSPENSIONS 

DESCRIBING THE SMOOTHNESS OF MOTION WITH THE METHODS OF 

VECTOR MECHANICS 

 

The most accurate description behavior of the vehicle is achieved by using three-

dimensional mathematical models. The advantage of such schemes is that it is possible to 

investigate the relocation of the car and turns along the axes Ox, Oy and Oz of the coordinate 

system located in the center of gravity (i.e. all degrees of freedom) which is a premise for 

high accuracy in computation process [7]. Schemes of the models are shown in Figure 1 and 

Figure 2. 

 

The systems under consideration consists suspended and nosuspended masses. The 

suspended masses include the masses of the elements of the car body, passengers and load. 

In the center of gravity is fixed local coordinate system  O0x0y0z0. The suspension is 

implemented as a tire, arm, axle and other components are combined in one element which 

is hinged to the suspended masses [10]. 

 

Each of these elements is fixed to local coordinate system, respectively O1x1y1z1, O2x2y2z2, 

O3x3y3z3, O4x4y4z4. In the equilibrium position the axis of the all coordinate systems are 

parallel. All displacements of local coordinate systems are given to the absolute coordinate 

system OАxАyАzА.For systems of Fig. 1 and Fig. 2 make the following assumptions [11]: 

 elements of the system are solids; 
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Figure 1: Kinematic scheme of a car with front transverse and rear longitudinal arms 

 

 
 

Figure 2: Kinematic scheme of a car with front and rear transverse arms 

 

 anti-roll bars are massless and their stiffness is regarded as equivalent spring 

connected to the arms at point to a distance Lsf of the joint (hinge) of the front axle 

and Lsb of the joint of the rear axle; 

 give an account damping and elastic properties of the main elements crf, crb, βrf, βrb, 

respectively, springs and shock absorbers the front and the rear axle, and the 

elasticity of the tire cgf and cgb the front and the rear axle; 

 elastic and damping elements have linear characteristics; 
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 system is placed in a equilibrium position as the centers of gravity to the wheels lie 

on a horizontal axis. O1y1 axis coincides with the axis O2y2, and O3y3 axis 

coincides with O4y4.  

 

For generalized coordinate systems are adopted: 

 

 z0 - linear displacement of the local coordinate system O0x0y0z0 to absolute  

OAxAyAzA on axis Oz; 

 φ0, ψ0 - angular displacement of the local coordinate system O0x0y0z0 to absolute  

OAxAyAzA respectively around the axes Ox and Oy; 

 φ1 - angular displacement around the axis  O1x1 of the coordinate system O1x1y1z1; 

 φ2 - angular displacement around the axis  O2x2 of the  coordinate system O2x2y2z2; 

 φ3 - angular displacement around the axis  O3x3 of the coordinate system O3x3y3z3; 

 φ4 - angular displacement around the axis  O4x4 of the coordinate system O4x4y4z4; 

 ψ3 - angular displacement around the axis  O3y3 of the coordinate system O3x3y3z3; 

 ψ4 - angular displacement around the axis  O4y4 of the coordinate system O4x4y4z4;  

 

To find laws of motion in the absolute coordinate system OAxAyAzA is necessary to define 

the transition matrices of each local coordinate systems to the absolute. 

 

Matrix of transition from O0x0y0z0 to OAxAyAzA for Fig. 1 and 2 is: 
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x0 and y0 are zero because is consider only linear oscillation on axis Oz, i.e. only vertically; 

Matrix of transition from O1x1y1z1, O2x2y2z2, O3x3y3z3, O4x4y4z4, to O0x0y0z0 have a type: 

 

For Figure 1: 
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For Figure 2 only T
0

3 and T
0

4 are different: 

 



























1000

cossin0

sincos0

001

33

330

3
H

b

L

T
b

b































1000

cossin0

sincos0

001

44

440

4
H

b

L

T
b

b





 
 

(3) 

 

After multiplying the matrices and simplify the resulting expressions for the components of 

the angular velocity of arms to three axes: 

 

For Figure 1:  

 

-front right arm: 
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(4) 

 

After removal of terms of a higher order is received:  
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(5) 

 

Similarly to determine the angular velocities of the other arms:   

-front left arm: 
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- rear right arm:  
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(7) 

 

- rear left arm:  

 

  04  A

x                 404   A

y                 04 A

z  
(8) 

 

For Figure 2 is only different angular speeds of the rear arms: 

 

- rear right arm:  
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- rear left arm: 
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Kinetic energies of two systems are: 

 

For Figure 1: 
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For Figure 2: 
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Potential energies of the two systems are: 

 

For Figure 1: 
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For Figure 2: 
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The Rayleigh’s functions are: 

 

For Figure 1: 
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For Figure 2: 
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After applying Lagrange's equation of 2nd kind: 
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For equations describing the laws of motion of the system is valid: 

 

       FqCqq  
 (18) 

 

- [M] is the matrix of inertia that is symmetrical with the main diagonal with dimension 7x7 

and she has the following form: 
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- [C] is the matrix of elasticity, which is also symmetric and has dimension 7x7   

 

 
 

Cells colored in Lt Dwn Diagonal refer to the system of Figure 1 and those in gray (light) of 

Figure 2. 

 

- [B] is the matrix of dissipative forces, showing the influence of damper - symmetric with 

dimension 7x7: 
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To obtain natural frequencies of its system equations are presented in Cauchy normal form: 

 

0 Lyy
 (19) 

 

Where L is: 
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The output parameters of the system are vibration displacement, vibration velocity, vibration 

acceleration and they are obtained from the equations: 

 

YLyy   (21) 

 

Where Y is: 
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After integration of the system using the method of Runge - Kutta receive all decisions in a 

given time interval. 
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NUMERICAL INVESTIGATIONS 

 

The main parameters and their numerical values are shown in table 1: 

 

Table 1: 

№ Parameter Symbol Value 

1. Suspended masses m0 1400 kg 

2. Nosuspended masses mp 30 kg 

3. 
Moment of inertia of the sprung masses around 

longitudinal axis (x-axis) 
J0x 550 kg.m

2
 

4. 
Moment of inertia of the sprung masses around 

transverse axis (y-axis) 
J0y 2000 kg.m

2
 

5. 
Moment of inertia of the unsprung masses on the 

front axle around x-axis 
Jpxf 5 kg.m

2
 

6. 
Moment of inertia of the unsprung masses on the rear 

axle around x-axis 
Jpxb 2 kg.m

2
 

7. 
Moment of inertia of the unsprung masses on the 

front axle around y-axis 
Jpyf 2 kg.m

2
 

8. 
Moment of inertia of the unsprung masses on the rear 

axle around y-axis 
Jpyb 5 kg.m

2
 

9. 
Vertical co-ordinate of the center of gravity of the 

unsprung masses in relation to joint of the arms 
H 0,4 m 

10. 
Horizontal co-ordinate of the center of gravity of the 

unsprung masses in relation to joint of the front arms 
bf 0,4 m 

11. 
Horizontal co-ordinate of the center of gravity of the 

unsprung masses in relation to joint of the rear arms 
bb 0,6 m 

12. Distance from the center of gravity to the front axle Lf 1,1 m 

13. Distance from the center of gravity to the rear axle Lb 1,5 m 

14. Length of the front arm bkf 0,42 m 

15. Length of the rear arm Lkb 0,42 m 

16. 
Distance from the contact point of the rear wheel to 

joint of the arm 
bkb 0,2 m 

17. 
Distance from the center of gravity of the front(f) 

and the rear(b) arm to the respective joint 
Lmp 0,4 m 

18. 
Distance from fixing point of the front(f) and the 

rear(b) main elastic element to the respective joint 
Lc 0,3 m 

19. 
Distance from fixing point of the front(f) and the 

rear(b) anti-roll bar to the respective joint 
Ls 0,28 m 

20. Radius of the front(f) and the rear(b) wheels Rk 0,26 m 

21. 
Stiffness coefficient of the main elastic elements of 

the front axle 
crf 25000 N/m 
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№ Parameter Symbol Value 

22. 
Stiffness coefficient of the main elastic elements of 

the rear axle 
crb 25000 N/m 

23. Stiffness coefficient of the tyre cgz 125000 N/m 

24. 
Stiffness coefficient of the anti-roll bars of the 

front(f) and the rear(b) axle 
cs 20000 N/m 

25. 
Damping coefficient of the front(f) and the rear(b) 

shock absorbers 
βr 1900 N.s/m 

 

The parameters are not measured by authors and are taken from literary sources cited below. 

 

Natural frequencies of the systems: 

 

0.8099 Hz (for Fig.1) / 0.9839 Hz (for Fig. 2) - frequency of linear oscillations of suspended 

masses on z-axis;  

1.6722 Hz / 1.7286 Hz - frequency of angular oscillation of  the sprung masses around x-axis;  

1.1740 Hz / 0.8367 Hz - frequency of angular oscillation of the sprung masses around y-axis;  

7.8614 and 7.8506 Hz / 7.8593 and 7.8832 Hz - angular frequency of the front arms;  

8.3490 and 8.3100 Hz / 8.2327 and 8.3100 Hz - angular frequency of the rear arms;  

 

Disturbing actions in the system are sinusoidal and are attached in the center of the contact 

patch of the tire with the road. They have the following form: 

 

))cos(1(0 vtqq     (23) 

 

q0 = 0,02 m - height of the amplitude of roughness; 

v  - circular frequency of the disturbing action: 

 

v
s

rad
S

V
,

.2
  (24) 

 

The frequency of the disturbing action expressed in hertz: 

 

v  Hz
S

V
,

.2

2

1 


   (25) 

 

V - velocity of the car, m / s; 

S - wavelength, m. 

 

As the maximum accelerations are important, the investigated of the behavior of individual  
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elements of the system was conducted at a frequency effects similar to their natural 

frequencies. The results obtained for some of the accelerations are shown in figures below:  

 

  
 

Figure 3: Linear acceleration of sprung masses on z-axis respectively  

of the models in Figure 1 and 2 

 

 
 

Figure 4: Angular acceleration of suspended masses on y-axis respectively  

of the models in Figure 1 and 2 

 

 

Figure 5: Angular acceleration of the front left arm of Figure 1 and 2 
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CONCLUSION 

 

The generalization of the matrix of both automotive suspension may be used to create 

automated software to set it computing part and thus to accelerate the work in choosing the 

type of suspension and its elastic parameters. 
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