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INTRODUCTION

Kinematical structure of the vehicle independent suspension with increased speeds of
motion have been refined over time and today there are a large number of its variants -
single, double, and more arm suspensions. Underlying all these are single arm suspensions

[6].

The aim of this work is using the methods of vector mechanics to analyze the results for
both types of suspensions for the generalization of the computing process, which form the
basis of an automated computer program to select the elastic characteristics of the
suspension. Numerical experiments are conduct with MATLAB.

THREE-DIMENSIONAL MATHEMATICAL MODELS OF ARM SUSPENSIONS
DESCRIBING THE SMOOTHNESS OF MOTION WITH THE METHODS OF
VECTOR MECHANICS

The most accurate description behavior of the wvehicle is achieved by using three-
dimensional mathematical models. The advantage of such schemes is that it is possible to
investigate the relocation of the car and turns along the axes O,, O, and O, of the coordinate
system located in the center of gravity (i.e. all degrees of freedom) which is a premise for
high accuracy in computation process [7]. Schemes of the models are shown in Figure 1 and
Figure 2.

The systems under consideration consists suspended and nosuspended masses. The
suspended masses include the masses of the elements of the car body, passengers and load.
In the center of gravity is fixed local coordinate system OgXgYyoZo. The suspension is
implemented as a tire, arm, axle and other components are combined in one element which
is hinged to the suspended masses [10].

Each of these elements is fixed to local coordinate system, respectively O1X1y12;, O.X2Y,25,
O3X3Y3Z3, O4XgYaz4. In the equilibrium position the axis of the all coordinate systems are
parallel. All displacements of local coordinate systems are given to the absolute coordinate
system O X,YaZa.For systems of Fig. 1 and Fig. 2 make the following assumptions [11]:

o elements of the system are solids;
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Figure 2: Kinematic scheme of a car with front and rear transverse arms

anti-roll bars are massless and their stiffness is regarded as equivalent spring
connected to the arms at point to a distance L of the joint (hinge) of the front axle
and L, of the joint of the rear axle;

give an account damping and elastic properties of the main elements Cy, Crp, Brf> Bros
respectively, springs and shock absorbers the front and the rear axle, and the
elasticity of the tire cg and cg, the front and the rear axle;

elastic and damping elements have linear characteristics;
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e system is placed in a equilibrium position as the centers of gravity to the wheels lie
on a horizontal axis. O,y; axis coincides with the axis O,y,, and Osy; axis
coincides with O,y,.

For generalized coordinate systems are adopted:

ez - linear displacement of the local coordinate system OgXeYezo to absolute
OaXaYaZa 0n axis O;

e (o, Yo - angular displacement of the local coordinate system OgXgyoZo to absolute
Oaxayaza respectively around the axes O, and Oy;

e ;- angular displacement around the axis O;x; of the coordinate system O;X;Yy,2;;
e ¢, -angular displacement around the axis O,x, of the coordinate system O,X,Y,25;
e (@3- angular displacement around the axis O3x; of the coordinate system O3X3Yszs;
e (4 -angular displacement around the axis O4x, of the coordinate system O;XsY4Zs;
e 3 -angular displacement around the axis Osys of the coordinate system O3zXaysZs;
ey, - angular displacement around the axis Oy, of the coordinate system O4XsYazs;

To find laws of motion in the absolute coordinate system OaXaYaZa IS necessary to define
the transition matrices of each local coordinate systems to the absolute.

Matrix of transition from OgXgYoZo t0 OaXayaza for Fig. 1 and 2 is:

cosy, 0 —siny, 0

74— —sing,.siny, cos@, -—sing,.cosy, O )
0 CoS@,.Siny, Sing, CO0S@,.COSY, Z,
0 0 0 1

X0 and y0 are zero because is consider only linear oscillation on axis Oz, i.e. only vertically;
Matrix of transition from O;X1Yy121, OoX2Y5Z5, O3X3YsZs, O4XsYazZa, 10 OgXoYoeZo have a type:

For Figure 1:
1 0 0 L, | [cosy, 0 -siny, -L,
10 0 cosep, —sing, —b 10 0 1 0 —b,
Y |0 sing cosp, —H * |siny, 0 cosy, -H
0 0 0 1 L 0 0 0 1
] @
10 0 L] cosy, 0 -siny, -L,
10 0 cosp, -sing, b 70 0 1 0 b,
|0 sing, cosp, —H Y |sing, 0 cosy, -H
0 0 0 1| L0 0 0 1
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For Figure 2 only T% and T, are different:

1 0 0o -l 1 0 0o -L
1o 0 cosp, -sing, -b, 70 _ 0 cosep, -—sing, b,
* 10 sing, cosp, —H|* |0 sing, cosp, -H @)
0 0 0 1 0 0 0 1

After multiplying the matrices and simplify the resulting expressions for the components of
the angular velocity of arms to three axes:

For Figure 1:

-front right arm:

a)li =@+ @,COSY, (01/; =/, COS @, + @ Siny, Sing, @)
@, = @ SiNY, COS @, — Y/, SiN @,
After removal of terms of a higher order is received:

A . A _ - A 5
Oy =@+ P Wy =Y, w,=0 (5)
Similarly to determine the angular velocities of the other arms:

-front left arm:
Wy = Py + @, gy =y, wh =0 ©)
- rear right arm:
a);; :(po (();;/=l/'/0+l/./3 a)3AZ =0 (7
- rear left arm:
A _ . A _ - . A
Wy = Py Wy =YW+, w;, =0 (8)

For Figure 2 is only different angular speeds of the rear arms:

- rear right arm:
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a)3Ax =@y + weﬁ/ =¥, wy, =0 9
- rear left arm:
A o . A 7 A
O =@+ ¢, Wyy =Wy w,, = 0 (10)

Kinetic energies of two systems are:

For Figure 1:
T 1mz‘2+1.] '2+1J '2+1J (¢ +')2+1J (¢ + ¢ )2+
= - P - 4 - Py TP - Po TP

5 070 "5 70xY0 T, N0yY0 T, Y px 0 T EL o T pxf 0 T2

1 . 201 . . \2
+2prb(l//0+'//3) +2prb('//0+l//4) +

1 2 1 2 1 . . X .\ 2
+2(E‘]pyfw0)+2(EJpr¢0)+gmp(ZO_(mef +bf)qo0+Lfy/0—mef(pl) +
1 . . . .2 1D
+Emp(zo+(mef +bf)¢zo+Lfy/0+mefgo2) +

1 . . . \2
5 Mp (20 b0 ~ (bmpp *+ Lp)Wo ~ Linpp¥'a)” +

1 , . ) .32
5 Mp (2 *ByPo ~ (kb + Lp)¥0 ~ Linpn¥'4)

For Figure 2:

1 2 1 2 1 2 1 . L \2
T:EmOZO +E‘]Ox(/70 +EJOVWO +EJpr (g00+g01) +

1 o2 1 o201 2
+E~Jpr (pg +22) +E‘]pxb(¢0+(ﬂ3) +E‘]pxb(¢0+¢4) +

1 .2 1 2.1 . . 5 . \2
+2(E‘]pyfV’O)+2(EJpyb'/’O)JrEmP(ZO_(mef +bf)g00+Lfl//0—mefgol) +
1 (12)
. . . . \2
+Emp(20+(|_mpf +bf)go0+Lfy/0+mef¢2) +
1 , . . .
*5Mp (2o = (Lnpp +Pp)P0 ~Lp¥o ~ LmppP3) *

1 . . )
5 Mp (2o * (Lnpy +Pp)00 ~Lp¥0 + Linph#4)

Potential energies of the two systems are:

For Figure 1:
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1 2 1 2 1 2 1 2

M= erg (ber o0) ™+ Gt Clop o)™+ Gy (Lepya)™ + Crp(Lepva)” +

1 2
gz (20 = (B +by o + Levo ~Bgoy ~ay)” +

1 2
+ECQZ(ZO+(bf+bkf)‘/’0+|‘f‘/’0+bkf¢2_qf2) +

1 2

+- gz (20 = B *byp)eg — (L + Ly o = Lz ~Gpy)™ +

1 2
+- gz (2o + (B e ~ (L + L Wo ~ Lip¥g = Up2)

1 21 2
5 Cst Clst o~ Lsp02)™ + - Cop(Chgpv *+ Lspa)
For Figure 2:

1 2 1 2 1 2
= Ecrf (Legop) +Ecrf CLe92) +Ecrb(l‘cb(pél) *
1 2 1 2
5 CbChen®a)” 7 Cqr (29 = (O B )og + Ly ~Bp ey —apy)” +
1 2
*Ech(ZO +(bf +bkf )goo + Lf;//0 +bkf¢2 —qu) +
1 2
5 Caz(%0 = O + by )og ~ Lo =By = Gpy) ™ *
1 2
* Caz (%0 *+ B +bipy)eg ~ Ly + by 24 = Upp)

1 2 1 2
st Chsr o1 = Lsg02)” 2 Cop (FLope3 ~ Lapoa)

The Rayleigh’s functions are:

For Figure 1:

1 - N2 1 - \2 1 - \2 1 . 2
Rziﬂrf(l—cfwl) +§ﬂrf(_|—cf¢2) +§ﬂrb(chW3) +§ﬁrb(|‘cblfll4)
For Figure 2:

1 c\2 1 RY 1 ©\2 1 - \2
R=Eﬂrf('~cf¢1) +Eﬁrf(_|-cf(p2) +Eﬂrb("cb¢3) +Eﬂrb(_|‘cb¢4)

After applying Lagrange's equation of 2nd kind:

EHEHEHE
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(13)

(14)

(15)

(16)

(A7)
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For equations describing the laws of motion of the system is valid:

[Mi+[BJg+[Cla

(18)

[F]

- [M] is the matrix of inertia that is symmetrical with the main diagonal with dimension 7x7

and she has the following form:

............. LN e N
ey [ T | e |

I, =

LA Sy panap )

g

0 0
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o
o aaway adu-pay
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- [C] is the matrix of elasticity, which is also symmetric and has dimension 7x7

"7///////,“/»/“.,” R
M
o
L (] 45

e i |

. 7(M+%)
1974 (Mg g/

ANSNENINENENY

+4%q)

m m m (Mq+ig)Hg Mg m
" | | (M) |
" " L g A
J L L

2
A

0
A

- == -1
r

Cells colored in Lt Dwn Diagonal refer to the system of Figure 1 and those in gray (light) of

Figure 2.

- [B] is the matrix of dissipative forces, showing the influence of damper - symmetric with

dimension 7x7:
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0 0 E 0 0 0 0 0
o0 o0 i oo i o o i o i o
""" 0 oooooo

0 0 5 0 Brr.L % 0 0 0
0 0 0 i 0 g% o0 0
0 . 0 i 0 i 0 i 0 ipel%i 0 |
o0 oo | o o o 0 Bull

____________________________________________________________________________________________

To obtain natural frequencies of its system equations are presented in Cauchy normal form:
y+Ly=0 (19)

Where L is:

M™B M™C
L{ | o } (20)

The output parameters of the system are vibration displacement, vibration velocity, vibration
acceleration and they are obtained from the equations:

y+Ly=Y (21)

Where Y is:

o-[mro]
O

After integration of the system using the method of Runge - Kutta receive all decisions in a
given time interval.
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NUMERICAL INVESTIGATIONS

The main parameters and their numerical values are shown in table 1:

Table 1:

Ne Parameter Symbol | Value

1. Suspended masses mo 1400 kg

2. Nosuspended masses m, 30 kg

3 Moment_of inertia of the sprung masses around Jo. 550 kg.m?
longitudinal axis (x-axis)

4 Moment of m_ertla of.the sprung masses around Joy 2000 kg.m?
transverse axis (y-axis)
Moment of inertia of the unsprung masses on the 2

S | front axle around x-axis It Skgm

6. Moment of mertlg of the unsprung masses on the rear Jows 2 kg.m?
axle around x-axis P

7 Moment of inertia of the unsprung masses on the Iy 2 kg.m?
front axle around y-axis

8 Moment of mertl_a of the unsprung masses on the rear Jogo 5 kg.m?
axle around y-axis
Vertical co-ordinate of the center of gravity of the

9. . . . H 0,4m
unsprung masses in relation to joint of the arms
Horizontal co-ordinate of the center of gravity of the

10. . . L by 0,4 m
unsprung masses in relation to joint of the front arms
Horizontal co-ordinate of the center of gravity of the

11. : X s by 0,6 m
unsprung masses in relation to joint of the rear arms

12. | Distance from the center of gravity to the front axle L¢ 1,1m

13. | Distance from the center of gravity to the rear axle Ly 1,5m

14. | Length of the front arm byt 0,42 m

15. | Length of the rear arm Lo 0,42 m

16. !Dl_stance from the contact point of the rear wheel to » 0.2m
joint of the arm

17 Distance from the center of gravity of the front(f) L 04m

" | and the rear(b) arm to the respective joint e '

Distance from fixing point of the front(f) and the

18. - . L L. 0,3m
rear(b) main elastic element to the respective joint

19 Distance from fixing point of the front(f) and the L 028 m

" | rear(b) anti-roll bar to the respective joint s '

20. | Radius of the front(f) and the rear(b) wheels Ry 0,26 m

21 Stiffness coefficient of the main elastic elements of o 25000 N/m
the front axle
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Ne Parameter Symbol | Value

Stiffness coefficient of the main elastic elements of
the rear axle

23. | Stiffness coefficient of the tyre Cqz 125000 N/m

Stiffness coefficient of the anti-roll bars of the
front(f) and the rear(b) axle

Damping coefficient of the front(f) and the rear(b)
shock absorbers

22. Crp 25000 N/m

24. Cs 20000 N/m

25, B, 1900 N.s/m

The parameters are not measured by authors and are taken from literary sources cited below.
Natural frequencies of the systems:

0.8099 Hz (for Fig.1) / 0.9839 Hz (for Fig. 2) - frequency of linear oscillations of suspended
masses on z-axis;

1.6722 Hz / 1.7286 Hz - frequency of angular oscillation of the sprung masses around x-axis;
1.1740 Hz / 0.8367 Hz - frequency of angular oscillation of the sprung masses around y-axis;
7.8614 and 7.8506 Hz / 7.8593 and 7.8832 Hz - angular frequency of the front arms;
8.3490 and 8.3100 Hz / 8.2327 and 8.3100 Hz - angular frequency of the rear arms;

Disturbing actions in the system are sinusoidal and are attached in the center of the contact
patch of the tire with the road. They have the following form:

=0, (1—cos(vt)) (23)

Jo = 0,02 m - height of the amplitude of roughness;
V - circular frequency of the disturbing action:

V = 27;'\/ ,ra% (24)

The frequency of the disturbing action expressed in hertz:

v L2V, (25)
27 S

V - velocity of the car, m/s;
S - wavelength, m.

As the maximum accelerations are important, the investigated of the behavior of individual
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elements of the system was conducted at a frequency effects similar to their natural
frequencies. The results obtained for some of the accelerations are shown in figures below:

az[mis?]

az[m/s?]

apsi[rad/s?]
5 &5 0B c o o o
PSS - T S <N M

=]
=

300

Figure 3: Linear acceleration of sprung masses on z-axis respectively
of the models in Figure 1 and 2

apsi[rad/s?]

Figure 4: Angular acceleration of suspended masses on y-axis respectively
of the models in Figure 1 and 2
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Figure 5: Angular acceleration of the front left arm of Figure 1 and 2
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CONCLUSION

The generalization of the matrix of both automotive suspension may be used to create
automated software to set it computing part and thus to accelerate the work in choosing the
type of suspension and its elastic parameters.
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