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1. INTRODUCTION 

Composite materials consist two or more constituents such as fibres and matrix 
which make layers mutually bonded to form multilayered composite called laminate. Fibres 
carry loads giving strength of composite, and matrix bond fibres together and have role in 
transfer loads to fibre, forms outer shape of composite and between other properties defines 
its behavior influenced by environment. Fibres are made of carbon, glass, aramid (such as 
kevlar) or metal, and the most often they are 60-70% of composite volume. Matrices may be 
made of polymers, such as thermosets or thermoplastics, metals, such as aluminum alloys or 
magnesium, ceramics etc. 
 
2. GOVERNING EQUATIONS 

 
Governing equations of elastic materials in small strain conditions are developed in 

the beginning of nineteenth Century. If strains are small enough equations are linear and 
relation connecting stress and strain are generalized Hooke’s Law given as  

( )32,,1,,, == lkjiCσ klijklij ε , (1) 
 

which is postulated by Cauchy. This law is base of linear elasticity. Coefficients ijklC  are 
stiffness coefficients. That is tensor of fourth rank whose coefficients, in general, vary from 
point to point of elastic body. If these coefficients are independent on position than elastic 
body is homogeneous. In direct notation equation (1) may be expressed as  

εσ C= . (2) 
  

Strain energy function W is specific energy of deformation and it is positive 
definite function. Stiffness coefficients ijklC , taking in account symmetry of stress and 
strain, have 21 independent components in body with general anisotropy. Strain energy W , 
for linear elastic materials, may be defined as quadratic in strain ijε  in form 

),,,,,(, 321
2
1

== lkjiCW klijijkl εε . (3) 
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3. LINEAR ELASTICITY – ONE FAMILY OF FIBRES 
 

Material reinforced by one family of fibres has one preferred direction and it is 
transversely isotropic in relation to that direction. Preferred direction may be defined with 
field of unit vectors a  which may vary from point to point. Trajectories of unit vector field 
a  form lines called fibres and material is transversely isotropic in relation to local fibre 
direction. Such material is usually treated in coordinate system with one axes coincides with 
axes of transversal isotropy and study constrains on strain energy function from 
requirements that stay invariant during rotations around that axes. Here, however, we are 
going to use coordinate free constitutive equations following Spencer [1]. 
In such approach strain energy W  is function of both strain ε  and fibre a  direction, that is 
 

( )aε,WW = . (4) 
 

The most general quadratic form of strain energy function is given as 
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where βαμμλ ,,,, LT  represent elastic constants. 

Constitutive relation then may be expressed as 
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Stiffness tensor then may be calculated, as shown in [2], in following way 
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(7) 

 
showing obvious dependence on fibre direction. 

Expression (7) is in agreement with well known expressions for transversally 
isotropic linear elastic material. Stiffness coefficients may be expressed in relation to other 
engineering constants more suitable for direct measuring. Material constant Lμ  represents 
shear modulus along the fibre direction a , while Tμ  represents shear modulus 
perpendicular to the fibre direction a . Remained material constants βαλ ,,  may be 
connected to other modulus such as extension modulus, Yung’s modulus or Poisson ratio. 
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Taking fibre direction to be along axes 1x  of Cartesian coordinate system leads to 
expression of unit fibre direction vector ( ) ( ) ( )0,0,10,0,1 == aai  and using Voight 
notation in (7) one obtains 
   
 ,24211 TLC μμβαλ −+++=  

 ,2112 CC =+= αλ  

 ,3113 CC =+= αλ  

 ,222 TC μλ +=  

 ,3223 CC == λ  

 ,233 TC μλ +=  

 ,44 TC μ=  

 ,55 LC μ=  

 ,66 LC μ=                 

(8) 

 
and all remained constants vanish, that is 
 

.0564645363534262524161514 ============ CCCCCCCCCCCC  (9) 

 
In Voight notation indices 11, 22 and 33 take values 1, 2 and 3, respectively, and indices 23, 
13 and 12 take values 4, 5 and 6, respectively. 
 
4. BULK WAVES 
 

Mechanical behavior of anisotropic media may be seen through examination of 
bulk waves. These waves propagate through unbounded media without perturbations caused 
by boundaries and inter layers. Bulk waves may be decomposed in finite plane waves which 
propagate along arbitrary direction n  inside solid.  

Properties of these waves, according to [3], are determined with propagation 
direction and constitutive properties of media. In general, it is possible to generate three 
types of such waves, which are determined with three displacement vectors ( ) 3,2,1, =kkU  
representing acoustical polarization. These polarization vectors, with propagation directions, 
are shown in sketch in Figure 1. Three polarization vectors are mutually orthogonal, but 
usually any of them are neither parallel nor perpendicular to propagation direction n . 
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Figure 1 Typical scheme of polarization in anisotropic media 
 
In anisotropic media “pure” modes may appear for some particular propagation directions 
only, depending on degree of symmetry of considered material.  
3.1 Propagation conditions 

Propagation of elastic waves may be examined according to first Cauchy law of 
motion. Taking fact that stiffness tensor ijklC  possess symmetry in relation to second pair of 
indices one may write equations  

kj

l
ijkl

i
xx

uC
t
u

∂∂
∂

=
∂

∂ 2

2

2
ρ , (10) 

which represent system of homogeneous linear differential equations of second order in 
relation to displacement vectors. Solution of such system of equations may be supposed as 
plain wave solution with wave normal with components ( )321 ,, nnnni =)(  with 
displacement vector given as 

( ) ϕω i
i

txnki
ii eUeUu jj == −  (11) 

Expression (11) gives complex displacement, although displacement should be real. Vector 
(11) will satisfy system of homogeneous linear differential equations (10) if both real and 
imaginary parts satisfy (11). Substituting (11) in (10), taking into account ijji uiknxu =∂∂ , 
leads to 

( ) 02 =− liljkijkl UvnnC δρ  (12) 

Second order tensor ilΛ , introducing ρλ ijklijkl C= , which may be expressed as 

jkijklil nnλ=Λ  (13) 

is called Riemann-Christoffel’s tensor, and equation (13) may be written as 

( ) 02 =−Λ lilil Uv δ . (14) 
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This equation is known as Riemann-Christoffel’s equation and represents system of three 
homogeneous linear equations in relation to displacement amplitudes lU . Equation (14) in 
matrix form is 
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where elements ilΛ , using relation (13), may be expressed in the following way 
 

( ) ( )
( ) .33333132232222
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++++

++++==Λρ
 (16) 

 
5. NUMERICAL EVALUATION OF SLOWNESS SURFACES 
 

Materials reinforced by one family of fibres posses transversal isotropy and, 
without loss of generality, one may choose one of Cartesian axis, say 1x , to coincide with 
fibre direction. Thus, unit vector of fibre direction may be written as ),,()( 001=ia , and 
components of acoustic tensor (16), with use of (8), may be expressed as 
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Let suppose that propagation direction is in coordinate plane ),( 31 xx , than wave 

normal vector is ),,()( 31 0 nnni = , and in (17) 12Λ  and 23Λ  vanish leading to  
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Riemann-Christoffel’s equation may be solved analytically for very simple material 

symmetries only. In general, it is necessary to calculate wave surfaces numerically. Having 
in minds that crystallographic axes are known the simplest way of calculation is to coincide 
axes of symmetry with coordinate axes.  
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Let us choose Cartesian system ( )321 ,, ξξξ  whose axes coincide with axes of 
material symmetries. We may imagine vertical plane, which coincide initially with 
coordinate plane ),( 31 ξξ  and rotate around vertical axis 3ξ  for arbitrary angle θ . That 
plane is referred as sagittal plane. To simplify analysis and calculations it is useful to 
consider slowness surfaces, representing inversed velocities. These surfaces may be 
obtained by calculating phase velocities for chosen propagation direction, and then 
calculating of slowness as inverse of phase velocity. Slowness then may be drawn as 
function of propagation direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 One family of fibres 
 

In slowness surface is curved line, as intersection of slowness surface and sagittal 
plane, and each calculation leads to one point of all quasi-longitudinal and two quasi-
transversal slowness curves. By choosing propagation direction to be in sagittal plane and 
adding certain increment to angle of wave normal to horizontal axes it may be drawn 
complete slowness curve in sagittal plane. Rotation of sagittal plane around vertical 3x  
axes, for certain increment, one may obtain complete slowness surface for all three waves. 
That is illustrates in figure 2. 

Slowness curves in sagittal plane, in general are three closed curves which may 
intersect each other. Two slower wave speeds, represented with outer curves are quasi shear 
curves. Depending on material symmetry these curves may intersect each other or, in case of 
isotropic material, to coincide. On the contrary, inner slowness curve, which is separated of 
other two, is convex and represents quasi-longitudinal waves which travel with highest 
speed.   

For numerical calculation is employed carbon fibre epoxy resin composite which 
represents strongly anisotropic material. Material constants, for such materials are measured 
by ultrasound methods and reported in [4], have values 
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where as density is given as 3310601 mkg /, ⋅=ρ . 

Sagittal plane 
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By varying angle ψ  between 0 and 2π may be calculated slowness curve in sagittal 
plane whereas by rotating of sagittal plane around axes 3x  for angle θ  slowness surface 
may be completed. Slowness surfaces, for material reinforced by one family of fibres, are 
calculated in program pack MATLAB and presented in figures 3 to 6, for angles θ  varies as 

000 45300 ,,  and 090 , respectively. In these figures quasi-longitudinal waves are 
represented with solid lines, whereas quasi-transversal waves are represented with broken 
lines. 

In figure 3, for 00=θ , sagittal plane contains axis 1ξ , which coincide with axis 

1x , and, therefore coincide with preferred direction, that is with fibre direction. All three 
modes are clearly distinguished in sagittal plane except when propagating direction is along 

1x  axis, for 00=ψ , in which case two quasi-transversal waves have same speed, that is 
they meet each other. That is clear considering that propagation direction is along fibre 
direction and in plane perpendicular to fibres material behaves as isotropic.  
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 Figure 3  One family of fibres  °= 0θ    Figure 4  One family of fibres  °= 30θ  
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 Figure 5  One family of fibres  °= 45θ   Figure 6  One family of fibres  °= 90θ  

Increasing of sagittal plane rotation angle implies, as may be noticed in figures 4, 030=θ   
and 5, 045=θ , that slowness curve of quasi-longitudinal wave have elliptic shape, whereas 
quasi-transversal waves behave in such way that “faster” wave deviate from elliptic shape in 
regions in which propagation direction approaches to normal to fibre.  

For sagittal plane angle, 090=θ , as shown in figure 6, wave propagates normal to fibre and 
fibres are “embedded” in wave surface and, therefore one may observe three “pure” modes 
along symmetry lines, which propagate with constant intensity speeds, which may be 
concluded from the fact that slowness curves are circular. 

 
6. CONCLUSIONS 
 

Mechanics of continuum treats material on macroscopic level in which microscopic 
level may be used as preparation for homogenization purposes. Anisotropy has different 
effects on wave propagation as well as on complete elastic behavior of media, which may be 
observed trough fact that wave front deviate from spherical shape. General conclusions 
about anisotropic material behavior, in mechanical sense, are taken from considering of bulk 
waves propagation.  

For considered material acoustic tensor, as propagation condition, has been formed, 
and determined for different directions of wave propagation. For particular material 
reinforced by one family of fibres components of that tensor are calculated.  

These calculations has practical significance, because it has been formed easy 
mathematical approach which may give fast answer about material behavior in dynamic 
circumstances, which often appear in parts of motor vehicles.  
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This approach may be used as first approximation of dynamical behavior of real 
parts with anisotropic characteristics that appears very often in consideration of vehicle 
construction parts. 
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