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INTRODUCTION 

Today, with the increase of the consumer market, new products have been 

introduced in order to replace materials such as metals, cement etc., which are very heavy, 

corrosive and less environmentally friendly. One such material is the fibre reinforced 

composite. In the past 30 – 40 years fibre composites have been competing with materials 

such as steel, aluminium and concrete in cars, aircraft, military, buildings, bridges, bicycles 

and everyday sports goods. A very important aspect of fibre reinforced materials is their 

mechanical behaviour. 

Here is considered orthotropic materials modeled as fibre reinforced materials with 

one and two families of mechanically equivalent fibres. Constitutive equations employed 

here are developed for material which is made of unidirectional reinforced thin sheets, 

whose combinations form model of material. Here we study slowness surfaces, as indicators 

of dynamical behavior, analytically and numerically to obtain valuable information about 

wave propagation in arbitrary directions. Degrees of deviations of wave surfaces depend on 

degrees of anisotropy, and may give valuable information about dynamic deformations. 

The propagation condition in elastic waves propagation is shown by Nayfeh [6]. 

Failure criterions for materials reinforced by two families of strong fibres are given by 

Milosavljevic et al. in [5]. Numerical results, for various propagation directions, are given in 

details by Bogdanovic [1], based on material constants, for one family, measured by the 

ultrasonic method by Markham [4], and adopted for the case considered here 

CONSTITUTIVE EQUATIONS – LINEAR ELASTICITY 

The most of dynamical systems are naturally nonlinear. Because of that, it is not 

easy to find closed solutions of such systems. There we consider infinite domains so that we 

can omit questions concerned with the nature and interpretation of the correct boundary 

conditions, as well as the appropriate form of the stress tensor and the associated tractions. It 

may be shown that the equation describing the initial weak discontinuity, assuming that 
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tangent stiffness tensor on both sides of the surface of discontinuity has the same value, has 

the following form 
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where ijklc  represents the tangent stiffness tensor,  jn  the unit normal of singular surface, 

and kp  is the polarization vector. Localization tensor is the second order tensor 

ljijklik nnc . (2) 

The classical localization condition in the considered case may be expressed as 

0 ljijklik nncdet . (3) 

The equations of motion governing wave propagation in a generally isotropic 

elastic medium are given by many authors. The equation of motion may be expressed for 

infinitesimal displacements iu , Cartesian coordinates ix , density  , stress tensor ij  

and body forces per unit mass if , in the form 

iijij uf  ,  (4) 

where "," j  denotes a partial derivative with respect to jx  and the Einstein summation 

convention is employed. 

Equations of motion have the usual form, considering anisotropic linear elastic 

material neglecting body forces 

0,  iljkijkl uuc  , (5) 

where ijklc  are the components of stiffness tensor of the considered material. 

After some transformations, we get Riemann - Christoffel’s equation 

0)( 2  kikljijkl pvnnc   (6) 

and system of homogeneous equations (6), has nontrivial solutions, provided that 
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where 
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The equation (7), as an eigenvalue problem, leads to three values of phase velocity 

that correspond to the three polarization vectors 321 ,,,
)( 

kp . The components of 

Riemann - Christoffel’s tensor may be expressed as 
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The localization tensor is referred to as the acoustic tensor, in the study of wave 

propagation. If the tangent stiffness tensor is taken as the elastic stiffness tensor, the 

eigenvalues of the corresponding acoustic tensor (8) divided by the mass density are squares 

of the speed of elastic waves propagating in the direction in . This equation represents the 

propagation condition of bulk waves as a set of three homogeneous linear equations. The 

Riemann-Christoffel’s equation may be solved analytically only for the simplest cases of 

material symmetry. 

NUMERICAL ANALYSIS OF SLOWNESS SURFACES FOR MATEIAL 

REINFORCED BY TWO FAMILIES OF MECHANICALLY EQUIVALENT 

EXTENSIBLE FIBRES 

The material reinforced with two families of continuous fibres has the plane of 

symmetry tangent to both families of fibres, as the monoclinic symmetry and, therefore, has 

thirteen independent material constants. When two families of fibres are mechanically 

equivalent, the material behaves like orthotropic Axes of symmetry along the bisectors of 

the fibre directions and along the normal to plane tangent to fibres, reducing further number 

of independent material constants to nine. 

The best way when developing constitutive equations for elastic materials is to find 

an equation for the strain energy density of the material as a function of the strain. The strain 

energy density, if the material is isotropic, can be a function of strain measures that do not 

depend on the direction of loading with respect to the material. That the strain energy can be 

a function of invariants of the strain tensor only that is, combinations of strain components 

that have the same value in any basis.  The strain tensor always has three independent 

invariants, which could be the three principal strains, or the three fundamental scalar 

invariants, which are more convenient to use in practice. 

Strain energy , for linear elastic materials, may be defined as quadratic of strain   in 

form 

 

1
, ( , , , 1,2,3).

2
ijkl ij klW C i j k l         (10) 

 

When is material reinforced by two families of mechanically equivalent fibres 

material behaves as orthotropic and has nine independent material constants. The local fibre 

directions are denoted by the unit vectors   and   for bidirectional reinforcement. In that case 

we say that the vectors   and   are “mechanically equivalent” if the response is unaltered 

when   and   are interchanged. When materials have axes of symmetry along bisectors of the 

fibre directions and along the normal to plane tangent to fibres, Spencer [7, 8] has shown 

that the most general quadratic form of expression for strain energy function is 

 

        

   

       ,2cos

2cos

2

1

22
765

43

2
2

22
1

22

bebaeabebaeabeabebaea

beaebebaea

beabebaeaee







γγφγ

φγγ

γγμλ

εtrtr

trtrW

 

(11) 

 

where   are even functions of  , and   angle between the two families of fibres. 
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The elasticity tensor may be calculated by taking double partial derivation of  with 

respect to strain tensor, which leads to the expression for the stiffness tensor as follows 
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When two families of fibres are initially straight, then the fibre geometry may be 

described in the Cartesian coordinate system  , where   is the normal to the plane of the 

fibres the unit vectors, which represent fibres, may be written as 
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If stiffness tensor is defined then for arbitrary propagation direction may be 

calculated phase velocities for all three waves, whose reciprocities represent points of 

corresponding slowness surfaces. In general, it is necessary to calculate wave surfaces 

numerically. The simplest way of calculation is, if crystallographic axes are known, to 

coincide axes of symmetry with coordinate axes. Numerical calculation was performed for 

material with material constants deduced from measurement of unidirectional carbon fibre 

epoxy resin composite material, measured in [2], with numerical values whereas density is 

given as 
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Slowness surfaces, for material reinforced by two families of fibres in [3], are 

calculated in program pack MATLAB. 

Case when propagation is in the plane tangent to both families of fibres  

In this paper slowness curves are calculated for waves propagating in the plane 

tangent to both families of fibres,  that is in the plane of symmetry. For a fibre inclined for 

and slowness curves calculated in the plane of the fibres, for considered material for which 

is given in Figures 1. and 2. In these figures quasi-longitudinal waves are represented with 

solid lines, whereas two quasi-transversal waves are represented with broken lines. 
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Figure 1 Two families of fibres propagation 

in the plane of fibres 

Figure 2 Two families of fibres, propagation 

in the plane of fibres 

For considered material acoustic tensor has been formed, and determined, for 

different directions of wave propagation. 

CONCLUSIONS 

In the present paper mechanics of continuum treat material on macroscopic level as 

an anisotropic continuum and general conclusions about an anisotropic material behavior, in 

mechanical sense, are drawn from considering of bulk waves propagation. This approach 

may be used as a first approximation of dynamical behavior of the real parts with 

anisotropic characteristics. Numerical results show that a coordinate free formulation may 

give answers about the influence of fibres’ direction as well as about the influence of fibres’ 

strength on the wave propagation. 
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