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1. INTRODUCTION 

Suspension systems influence the overall performance of the vehicle by receiving 

the loads created by the road excitation. These loads are transmitted through the tires and the 

wheels ensuring that vibrations are isolated and not perceived by the passengers. Depending 

on the aspect of interest regarding the design of a suspension system, the focus of the studies 

is turned on the ride comfort or the road holding of the vehicle being the basic needs for a 

good suspension system. Ride comfort is related to the passenger’s perception of the moving 

vehicle’s environment, while road holding is the degree to which a car maintains contact 

with the road surface in various types of directional changes. Keeping the tires in contact 

with the ground constantly is of vital importance for the friction between the vehicle and the 

road affecting the vehicle’s ability to steer, brake and accelerate. Time domain statistics, 

such as mean suspension deflection, maximum and RMS values of suspension acceleration 

are often used in suspension design as criteria for road comfort ability. The main conflict 

and common trade-off in the automotive industry is the one concerning the displacement 

and the acceleration of the suspension. A hard configuration with high spring stiffness and 

high damping is required for reducing the suspension displacement. On the other hand, low 

spring stiffness and low damping is required for reducing suspension acceleration. This 

conflict depicts the trade-off between the ride comfort and the road holding.  

Multibody dynamics have been used extensively by automotive industry to model 

and design vehicle suspension. Before modern optimization methods were introduced, 

design engineers used to follow the iterative approach of testing various input parameters for 

vehicle suspension performance, setting as targets predefined performance indexes so as to 

be achieved. With the advent of various optimization methods along with developments in 

computational studies, the design process has been speeded up to reach to optimal values of 

the design parameters. Many studies, turned their attention to the optimization of the 

suspension systems, so as to facilitate the influence of design parameters in order to get the 

minimum or the maximum of an objective function subjected to certain constraints. These 

constraints depicted the practical considerations into the design process.  

The issue of the most appropriate objective function is the main subject of intense 

studies in order to be able to combine many aspects of the dynamical behaviour and 

overcome the aforementioned conflict of ride comfort and road holding. Georgiou et al [1]. 

Used a sum of the variances of the body acceleration, the suspension travel and the 

one of the tire forces as a fitness function. On the other hand, Ozcan et al. [2] used as fitness 
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function the sum of the RMS value of the weighted body acceleration and the difference 

between the maximum and the minimum force applied to the tire. While Shirahatt et al. [3] 

selected the root mean square of the passenger’s acceleration. Another index of performance 

was proposed by Gündoğdu et al [4], examining also the effect that the vehicle has on the 

passenger’s body by adding to the fitness function, terms concerning the variance of the 

head’s acceleration and the crest factor. Another approach regarding the fitness function 

included the use of the constraints as terms in the fitness function with suitable weights [5], 

depending on the importance of each constraint or as separate functions to the optimization 

algorithm [3]. This approach was followed also by Koulocheris et al. [6], where the 

maximum value of vertical acceleration of the vehicle body at the passenger seat was 

minimized from the view point of ride comfort adding a quadratic penalty of the sum of 

constraints functions. 

In this paper the optimization of a suspension system is studied. More specifically, 

not only the efficiency of different methods is investigated but also the efficiency of various 

fitness and objective functions. Three optimization methods were used: Genetic Algorithms, 

Gradient Based and a hybridization of the above algorithms. In conclusion this paper is 

organized as follows: in Section 1 the model used for the optimization of the heavy vehicle 

is described as well as the road excitation applied, in Section 2 the methods are presented 

while in Section 3, the optimization procedure applied in the problem is analysed, in Section 

4 and 5 the results of the current study are illustrated and discussed, and finally in Section 5 

conclusions and future work are displayed. 

2. VEHICLE MODEL 

In this paper, a heavy vehicle was modelled as a Half Car Model, as shown in 

figure 1, so as to examine the vertical vibrations that are induced from the road. This model 

simulates the front and rear axle of the vehicle and it allows the pitch phenomena to be 

observed. 

2.1 Equations of motion 

The mass of the body of the vehicle is considered as a rigid bar. The body of the 

vehicle has a mass ms, which is half of the total body mass, and lateral moment of inertia Iz, 

which is the half of the total body mass moment of inertia. The unspring masses for the front 

and rear wheel are mF and mR, respectively. The distance of the front and rear axle from the 

center of mass are aF and aR, respectively (Figure 1). Moreover, the tires are modelled with a 

spring system indicated by different parameters for the front and rear tires KTF
 and KTR

, 

respectively and were evaluated experimentally on previous work [9]. The tires receive as 

input the road excitations, zRoad F and zRoad R, which will be described in the next subchapter. 

The parameters of the vehicle are displayed in Tables 1 and 2. 

A suspension system has to adjust to the irregularities of the road surface, in order 

to ensure the comfort of the passengers and the holding of the vehicle. This adjustment is 

related to certain nonlinearities in the main components of the suspension, which can be 

observed mostly in active suspension systems. But nonlinearities can be found in passive 

suspension systems too, with the addition of nonlinear terms in either the springs or the 

dampers of the suspension. In this work, the nonlinearity of the suspension spring is studied. 

The spring suspension force can be mathematically described as: 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 𝐾𝑙 ∙ 𝑥 + 𝐾𝑛𝑙 ∙ 𝑥3 (1) 
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Table 1 Parameters of Half Car Model 

Values of Vehicle Parameters 

𝑚𝑠=2220 [kg] 

𝐼𝑧 =1142 [kg m
2
] 

𝑚𝐹=50 [kg] 𝑚𝑅=100 [kg] 

𝑎𝐹=1.61 [m] 𝑎𝑅=1.67 [m] 

𝐾𝑇𝐹
=4*10

5
 [N/m] 𝐾𝑇𝑅

= 2𝐾𝑇𝐹
 

 

         Table 2 Nomenclature of Vehicle Parameters 

Parameters Subscirpts 

z Vertical motion coordinate S Body 

θ Pitch motion coordinate F Front 

zRoad Road excitation R Rear 

m Mass l Linear 

C Damper’s coefficient nl Non-linear 

K Spring’s stiffness coefficient 
T Tire 

a Distance of the center of mass of the vehicle 

 

 

Figure 1 Half Car Model 

The derivation of the equations is based on rigid body theory and on the 

assumption of small angles; sinθ and cosθ are approximated as θ and 1, respectively. Thus, 

the governing equations of the model are: 

Body Bounce: 

𝑚𝑠 ∙ �̈�𝑠 + 𝐶𝐹   ∙ (�̇�𝑠 − �̇�𝐹 − 𝑎𝐹 ∙ �̇�)   + 𝐶𝑅    ∙ (�̇�𝑠 − �̇�𝑅 + 𝑎𝑅 ∙ �̇�)  

+𝐾𝑙𝐹
  ∙ (𝑧𝑠 − 𝑧𝐹 − 𝑎𝐹 ∙ 𝜃)   + 𝐾𝑙𝑅

  ∙ (𝑧𝑠 − 𝑧𝑅 + 𝑎𝑅 ∙ 𝜃) (2) 

           − 𝐾𝑛𝑙𝐹
∙ (𝑧𝑠 − 𝑧𝐹 − 𝑎𝐹 ∙ 𝜃)3 + 𝐾𝑛𝑙𝑅

∙ (𝑧𝑠 − 𝑧𝑅 + 𝑎𝑅 ∙ 𝜃)3 = 0  

Body Pitch: 
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𝐼𝑧 ∙ �̈� − 𝛼𝐹 ∙ 𝐶𝐹    ∙ (�̇�𝑠 − �̇�𝐹 − 𝑎𝐹 ∙ �̇�)  +  𝑎2 ∙ 𝐶𝑅  ∙ (�̇�𝑠 − �̇�𝑅 + 𝑎𝑅 ∙ �̇�)  

             − 𝛼𝐹 ∙ 𝐾𝑙𝐹
  ∙ (𝑧𝑠 − 𝑧𝐹 − 𝑎𝐹 ∙ 𝜃)   + 𝛼2 ∙ 𝐾𝑙𝑅

∙ (𝑧𝑠 − 𝑧𝑅 + 𝑎𝑅 ∙ 𝜃) (3) 

       − 𝛼𝐹 ∙ 𝐾𝑛𝑙𝐹
∙ (𝑧𝑠 − 𝑧 − 𝑎𝐹 ∙ 𝜃)3 + 𝛼2 ∙ 𝐾𝑛𝑙𝑅

∙ (𝑧𝑠 − 𝑧𝑅 + 𝑎𝑅 ∙ 𝜃)3 = 0  

Front Wheel Bounce: 

𝑚𝐹 ∙ �̈�𝐹 − 𝐶𝐹   ∙ (�̇� − �̇�𝐹 − 𝑎𝐹 ∙ �̇�)     − 𝐾𝑙𝐹
 ∙ (𝑧𝑠 − 𝑧𝐹 − 𝑎𝐹 ∙ 𝜃)  

(4) 
   −𝐾𝑛𝑙𝐹

∙ (𝑧𝑠 − 𝑧𝐹 − 𝑎𝐹 ∙ 𝜃)3  + 𝐾𝑇𝐹
∙ (𝑧𝐹 − 𝑧𝑅𝑜𝑎𝑑𝐹

) = 0 

Rear Wheel Bounce: 

𝑚𝑅 ∙ �̈�𝑅 − 𝐶𝑅   ∙ (�̇�𝑠 − �̇�𝑅 + 𝑎𝑅 ∙ �̇�)    − 𝐾𝑙𝑅
 ∙ (𝑥𝑠 − 𝑥𝑅 + 𝑎𝑅 ∙ 𝜃)  

(5) 
   −𝐾𝑛𝑙𝑅

∙ (𝑧𝑠 − 𝑧𝑅 + 𝑎𝑅 ∙ 𝜃)3  + 𝐾𝑇𝑅
∙ (𝑥𝑅 − 𝑧𝑅𝑜𝑎𝑑 𝑅

) = 0 

One of the most important parameters of a vehicle model are the suspension travel 

as well as the tire deflection. The suspension travel of the suspension is the term (𝑧𝑠 − 𝑧𝑅 −
𝑎𝑅 ∙ 𝜃) and (𝑧𝑠 − 𝑧𝑅 − 𝑎𝑅 ∙ 𝜃) for the front and rear suspension respectively and the tire 

deflection is (𝑧𝐹 − 𝑧𝑅𝑜𝑎𝑑𝐹
) and (𝑧𝑅 − 𝑧𝑅𝑜𝑎𝑑𝑅

) for the front and rear tire respectively. 

2.2 Road Excitation 

Generally, the subject of road excitation is important, since it allows researchers to 

investigate realistic road profiles through simulation. In this study, a road bump was 

generated mathematically, with a half-sinusoid excitation function. The height of the bump 

was selected as h=0.05 m with an appropriate length for the half-sinusoid of L=2 m. The 

vehicle velocity was constant and at 10 m/s. As a function of time, the road conditions could 

be given by: 

𝑦𝐹 = {ℎ ∙ sin(𝑤 ∙ 𝑡) , 𝑖𝑓 𝑡0 ≤ 𝑡 < 𝑡0 + 
𝐿

2 ∙ 𝑉
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   
 

(6) 

 

𝑦𝑅 = {ℎ ∙ sin(𝑤 ∙ 𝑡) , 𝑖𝑓 𝑡0 + 𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 𝑡 < 𝑡0 +
𝐿

2 ∙ 𝑉
+ 𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

 

(7) 

where t0 is the starting time of the road bump, t distance is the time lag between front 

and rear wheels (
𝑎𝐹+𝑎𝑅

𝑉
), whilst w is the excitation frequency 

2∙𝜋∙𝐿

𝑉
. More specifically, the 

front and rear wheels follow the same trajectory with a time delay tdistance, which is due to the 

distance aF+ aR of front and rear wheels. The excitation is illustrated in Figure 2. 
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Figure 2 Road Bump based on sinusoidal function 

3. OPTIMIZATION METHODS 

In this paper, three optimization methods were examined. At first, Genetic (GA) 

and Gradient Based (GB) Algorithms were used in order to investigate their efficiency as 

well as to validate and understand their behaviour based on the theory of previous work [7 

and 8]. Then, a hybridization of the above algorithms is tested in order to combine the 

advantages of each method and compare it with them.  

Hybrid Algorithms form a new area of interest for the research community, and the 

optimization methods would not be the exception. Hybrid optimization algorithms combine 

two or more different optimization methods in order to solve a problem, switching between 

them over the course of the algorithm. In this way all the advantages of the involved 

methods are drafted in order to achieve the optimum result. For example, GA are more 

likely to find a global minimum, contrary to the GB which are often trapped, as well as the 

fact that the GA do not require the calculation of any derivative. Thus, the fitness function 

of the GA does not need to be continuous, so they are able to handle problems with discrete 

solution spaces. Furthermore, GB should be used when the area of the desired solution is 

known, in any other case the GA have better results due to their stochastic nature. Based on 

these points, a possible combination would be a stochastic method followed by a 

deterministic one. In the beginning. GA will operate for a number of generations with large 

population in order to locate the area of the optimum solution. After that, GB is employed so 

as to locate the global minimum, knowing the area of the desired solutions. The GA set of 

optimal values is used as initial value for the GB method, and the upper and lower bounds 

are set in a symmetric area around the initial values. Thus, the ability of GB methods to 

converge to a local (in this case global) minimum is exploited. The genetic part in the hybrid 

algorithm was active for 10 generations. 

4. OPTIMIZATION PROCEDURE 

The object of the optimization is the vehicle model, mentioned in chapter 1.1, and 

the target of the optimization is the optimum dynamic behaviour. The design variables 

selected are all the suspension parameters and specifically the vector below: 

𝐷𝑒𝑠𝑖𝑔𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = [𝐾𝑙𝐹
 , 𝐾𝑛𝑙𝐹

, 𝐾𝑙𝑅
, 𝐾𝑛𝑙𝑅

, 𝐶𝐹 , 𝐶𝑅] (8) 

which are the linear and the nonlinear part of the spring as well as the damping 

coefficient of both the front and rear suspension system, see also Table 2. 

Regarding the bounds of the design variables, the upper and lower ones were 

chosen based on experimental processes, previous works and the literature: They are 
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presented in Table 3. As far as the constraints are concerned, they were chosen in terms of 

the dynamic behaviour of the vehicle and the design of the suspension. Specifically, the root 

mean square of body’s acceleration as well as the contribution of the non-linear term of the 

spring force were selected as the constraints of the optimization process being set under 1 

(m/s2) and between 10-30% respectively. 

 

Table 3 Lower and Upper Bounds of the Design Variables 

Design Variables Lower Bounds Upper Bounds 

𝑲𝒍𝑭
 , 𝑲𝒍𝑹

 (N/m) 3.2∙104 1.5∙105 

𝑪𝑭, 𝑪𝑹 (N/m⋅s) 2.0∙103 1.0∙104 

𝑲𝒏𝒍𝑭
 , 𝑲𝒏𝒍𝑹

 (N/m3) 5⋅105 3⋅108 

 

While regarding the fitness functions, it was decided to investigate single-objective 

problems in comparison with multi-objective ones. Thus, three single-objective problems 

were formulated regarding different targets of the dynamic behavior of the vehicle. The first 

target is the ride comfort of the driver and the safety of the truck load. This target is 

evaluated through the vehicle’s body acceleration (fitness1 - Case 1). The second one is the 

travel of both front and rear suspensions (fitness2 - Case 2). The third one is the deflection of 

both front and rear tires, ensuring road holding (fitness3 - Case 3). The mathematical 

equations of these targets were formed to the following three fitness functions (equation 9-

11). In order to achieve better results, the variances (will be used as var (x)) of the values, 

which depict the optimization targets, were selected. Moreover, so as to include in the terms 

fitness2 and fitness3 both the values of the front and rear suspension travel and the values of 

front and rear tire deflection respectively, the average value of their variances was used. To 

conclude, three single objective problems were built with the following fitness and objective 

functions: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠1 = 𝑣𝑎𝑟(𝑎𝑐𝑐𝑏𝑜𝑑𝑦) (9) 

  𝑓𝑖𝑡𝑛𝑒𝑠𝑠2 =
1

2
∙ [𝑣𝑎𝑟(𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛. 𝑡𝑟𝑎𝑣𝑒𝑙𝐹) + 𝑣𝑎𝑟(𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛. 𝑡𝑟𝑎𝑣𝑒𝑙𝑅)] 

(10) 

  𝑓𝑖𝑡𝑛𝑒𝑠𝑠3 =
1

2
∙ [𝑣𝑎𝑟(𝑡𝑖𝑟𝑒. 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐹) + 𝑣𝑎𝑟(𝑡𝑖𝑟𝑒. 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑅)] 

(11) 

Moreover, due to the fact that the three targets selected are in conflict, the optimal 

solution for each target would be different. Taking this conflict into consideration, the 

aforementioned targets were combined so as to formulate a multi-objective problem. In this 

way, it was possible to examine the balancing between the desired goals of the optimization 

and locate the optimum solution of the problem. In an attempt to save computational time, 

reduce the complexity of the problem and concentrate more to the comparison of the 

optimization methods, the multi-objective problem was converted into a single objective one 

through the sum of the three targets, mentioned in equations 9-11, as follows: 

  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑤1 ∙ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠1 +  𝑤2 ∙ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠2 + 𝑤3 ∙ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠3 = 𝑓1 + 𝑓2 + 𝑓3 (12) 

where w1, w2, w3 are the weight factors. In order to investigate the multi-objective 

approach more accurately, two scenarios were tested. In the first scenario the magnitudes of 
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all the three terms (f1, f2 and f3) were at the same order and balanced (Case 4). While in the 

second scenario with different weight factors, the term f1 was selected as the main one and 

its magnitude was set one order greater than the ones of the two other terms, f2 and f3 (Case 

5). The values of the weight factors were selected based on random simulations of the 

model. 

The optimization was implemented with the Optimization Toolbox of MATLAB 

R2016a, provided for academic use by NTUA. The methods selected for the configured 

problem was a Genetic Algorithm (ga of MATLAB), a Gradient Based Algorithm (active set 

of fmincon of MATLAB) as well as a hybridization of the above. To sum up, 5 different 

scenarios (S1-S5), regarding the optimization methods, were implemented for 5 different 

cases as far as the fitness functions are concerned (Case 1-5). The set of the optimization 

scenarios is illustrated in Table 4 in detail. In S1 and S3, the population size was set to 200 

as proposed in MATLAB R2016a for problems with more than 5 design variables (currently 

6), whilst in S2 and S4, the population size was set to 1000 in order to investigate the 

influence of the population size. As far as the hybrid method is concerned, the part of the 

genetic algorithm was active only for 10 generations and then the gradient based algorithm 

was enabled. 

 

       Table 4 Implemented Optimization Scenarios for each Case 

Implemented Optimization Scenarios for each Case 

Genetic Algorithm 
S1 Population Size 200 Fitness Function 

Tolerance 
10

-6
 

S2 Population Size 1000 

Hybrid Algorithm 
S3 Population Size 200 Fitness Function 

Tolerance 
10

-6
 

S4 Population Size 1000 

Gradient Based S5 Objective Function Tolerance 10
-6

 

 

5. RESULTS 

The results will be presented for each case of fitness and objective function (Case 

1-5). At first, in each case the optimal design variables will be presented for every 

optimization scenario (S1-S5). Furthermore, the RMS of the vehicle’s body acceleration, the 

maximum suspension travel of both front and rear suspensions and the maximum tire 

deflection through the front and rear tire forces, which are 𝐾𝑇𝑖
(𝑥𝑖 − 𝑦𝑖), will be illustrated 

after the simulation of the model for the optimal design variables.    

5.1 Case 1 

In this case, the fitness function was the variance of body’s acceleration. In terms 

of the objective function, the “best” optimal solution was found with optimization scenarios 

S4 and S5, which are the hybrid one with population 1000 and the gradient based algorithm 

respectively. In these scenarios, the fitness function, hence the term that depicts the ride 

comfort, reached to the minimum value, as it is shown both in Table 6, through the RMS of 

vehicle’s body acceleration, and in Figure 3, through the variance of vehicle’s body 

acceleration and term f1. Moreover, as far as the design variables are concerned, these two 

scenarios have converged to design variables closed to each other’s proving that the 

algorithms converged almost to the same solution. In addition, the contribution of the 

nonlinear part of the suspension spring is almost the same. In Table 5, the optimal solutions 

of the design variables verify the target of the optimization of this case, since in order to 

improve and secure the ride comfort, the optimization methods are trying to configure the 
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suspension system with low spring stiffness and low damping coefficient sacrificing the 

suspension travel. Finally, the computational time needed for the optimal solutions has to be 

mentioned due to the fact that the gradient based algorithm found the optimal solution in the 

5% of the time that the hybrid algorithm converged. 

 

        Table 5 Optimal Solutions of Design Variables / Case 1 

Design Variables 
Optimization Scenarios 

S1 S2 S3 S4 S5 

KlF
(N/m) 102620 34479 105019 43094 36194 

CF(N⋅s/m) 6950 2000 5890 2050 2582 

KlR
(N/m) 32352 74939 58027 33652 39741 

CR(N⋅s/m) 2083 5112 2155 2272 3228 

KnlF
(N/m3) 1.97*107 3.42*106 4.08*107 1.09*107 1.03*107 

KnlR
(N/m3) 8.58*106 4.47*107 1.30*107 9.19*106 1.18*107 

 

Table 6 Vehicle Model’s Parameters for the Optimal Solutions / Case 1 

Vehicle Model’s Parameters 
Optimization Scenarios 

S1 S2 S3 S4 S5 

RMS(accbody) (m/s
2
) 0.631 0.561 0.682 0.450 0.470 

Max. Suspension Travel Front (m) 0.025 0.037 0.024 0.040 0.037 

Max. Suspension Travel Rear  (m) 0.038 0.027 0.038 0.038 0.037 

Max. Tire Force Front (N) 4085 2249 3833 2991 2649 

Max. Tire Force Rear  (N) 3061 3750 3275 2610 2791 

Nonlinear% of Front Spring Force 11 12 19 29 28 

Nonlinear% of Rear  Spring Force 27 30 24 29 28 

 

  

Figure 3 Relation between terms (a) f2 and f1 (b) f3 and f1 / Case 1 
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5.3 Case 2 

 

In this case, the fitness function was the average of the variances of both front and 

rear suspension travels. In terms of the objective function, the “best” optimal solution was 

found with optimization scenarios S2, S3 and S4 which are the genetic algorithm with 

population 1000 and the hybrid ones with population 200 and 1000, respectively. In these 

scenarios, the fitness function, hence the term that depicts the suspension travel, reached to 

the minimum value of all the scenarios as it is shown both in Table 8, through the maximum 

value of both the front and rear suspension travels, and in Figure 4, through the average of 

the variances of the front and rear suspension travels, hence term f2. Moreover, as far as the 

design variables are concerned, the two scenarios, S2 and S4, have reached to close values 

proving that the algorithms converged to almost the same optimal solution. 

 

Table 7 Optimal Solutions of Design Variables / Case 2 

Design Variables 
Optimization Scenarios 

S1 S2 S3 S4 S5 

KlF
(N/m) 83283 51337 38952 57879 51377 

CF(N⋅s/m) 6635 9696 8003 8759 2003 

KlR
(N/m) 70210 36651 47540 36934 36456 

CR(N⋅s/m) 9091 8757 8286 9376 2001 

KnlF
(N/m

3
) 2.57*10

7
 2.48*10

7
 2.56*10

7
 1.30*10

7
 7.56*10

7
 

KnlR
(N/m

3
) 3.42*10

7
 1.37*10

7
 1.60*10

7
 1.84*10

7
 2.96*10

7
 

 

On the other hand, the optimization scenario S3 differs mainly on the linear part of 

the spring both to the front and the rear suspensions, proving that has selected a solution 

with different characteristics which could also be shown by its lower value of the RMS of 

the vehicle’s body acceleration. In Table 7, the optimal design variables of the current case 

verify the target of the optimization, due to the configuration of both higher spring stiffness 

and damping coefficient in order to secure the minimum suspension travel in contrary to the 

previous case. In addition, the failure of the gradient based algorithm has to be mentioned, 

due to the lack of compability between both the design variables in Table 7 and the vehicle 

parameters in Table 8 with the objective of the optimization, which is the minimization of 

the suspension travel. 

 

Table 8 Vehicle Model’s Parameters for the Optimal Solutions / Case 2 

Vehicle Model’s Parameters 
Optimization Scenarios 

S1 S2 S3 S4 S5 

RMS(accbody) (m/s
2
) 0.989 0.994 0.908 0.980 0.470 

Max. Suspension Travel Front (m) 0.030 0.025 0.026 0.026 0.041 

Max. Suspension Travel Rear  (m) 0.020 0.021 0.022 0.021 0.038 

Max. Tire Force Front (N) 4682 4168 3571 3957 3212 

Max. Tire Force Rear  (N) 3559 3276 3384 3364 3462 
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Nonlinear % of Front Spring Force 22 23 30 13 20 

Nonlinear % of Rear  Spring Force 16 15 14 18 10 

 

Finally, the computational time needed for the optimal solutions for optimization 

scenario S4 has dropped to the 50% of the time needed in S2, proving the importance of the 

hybrid algorithm and its effectiveness, as in both scenarios the optimal solution are similar. 

Additionally, in S3 due to the lower population and the hybrid algorithm, the problem 

converged to almost the 10% of the time in comparison with S2. 

 

  

Figure 4 Relation between terms (a) f2 and f1 (b) f3 and f1  / Case 2 

5.3 Case 3 

In this case, the fitness function was the average of the variances of both front and 

rear tire deflections. In terms of the objective function, the “best” optimal solution was 

found by the optimization scenarios S2 and S3 which are the genetic algorithm with 

population 1000 and the hybrid one with population 200. In these scenarios, the fitness 

function, hence the term that depicts the tire deflection, reached to the minimum value of all 

the scenarios as it is shown both in Table 10, through the maximum value of both the front 

and rear tire forces, and in Figure 5, through the average of the variances of the front and 

rear tire deflections, hence term f3. Moreover, as far as the design variables are concerned, 

the two scenarios, S2 and S3, have reached to close values proving that the algorithms found 

almost the same optimal solution. The only difference between the design variables in these 

two scenarios is the contribution of the nonlinear part of the spring of both front and rear 

suspensions. Despite the different population used in this two scenarios (S2 and S3), the 

hybrid algorithm with the lower population (S3) has succeeded in comparison with the 

genetic algorithm with the greater population (S2). The hybrid algorithm overcame the 

disadvantage of the lower population combining the advantages of both the genetic and the 

gradient based algorithm, leading to the optimal solution in a computational time of almost 

8% of the time of optimization scenario S2. The success is confirmed due to the close 

solutions of the design variables as well as the values of the important parameters of the 

vehicle’s model. Finally, the effectiveness of the gradient based algorithm, in this current 

case, is based on the connection of the tire deflection and the RMS of vehicle’s body 

acceleration, which is illustrated in Figures 3b-5b of all the cases. Particularly, the increase 

or the decrease of the term f1, which depicts the ride comfort, leads to the increase or the 

decrease of term f3, which depicts the tire deflection, respectively. 
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Table 9 Optimal Solutions of Design Variables / Case 3 

Design Variables 
Optimization Scenarios 

S1 S2 S3 S4 S5 

KlF
(N/m) 41279 33114 37028 47186 33583 

CF(N⋅s/m) 3632 2139 2092 2203 4242 

KlR
(N/m) 77718 65367 67512 57595 37473 

CR(N⋅s/m) 4319 3661 4211 2713 2000 

KnlF
(N/m

3
) 1.44*10

7
 4.95*10

6
 1.11*10

7
 8.54*10

6
 1.23*10

7
 

KnlR
(N/m

3
) 5.00*10

7
 2.69*10

7
 3.47*10

7
 2.62*10

7
 3.31*10

6
 

 

Table 10 Vehicle Model’s Parameters for the Optimal Solutions / Case 3 

Vehicle Model’s Parameters 
Optimization Scenarios 

S1 S2 S3 S4 S5 

RMS(accbody) (m/s
2
) 0.637 0.520 0.556 0.529 0.466 

Max. Suspension Travel Front (m) 0.033 0.036 0.037 0.038 0.031 

Max. Suspension Travel Rear  (m) 0.025 0.032 0.029 0.031 0.040 

Max. Tire Force Front (N) 2936 2226 2515 2853 2596 

Max. Tire Force Rear  (N) 3381 3537 3569 3006 3111 

Nonlinear % of Front Spring Force 27 16 30 21 26 

Nonlinear % of Rear  Spring Force 29 29 30 30 12 

 

  

Figure 5 Relation between terms (a) f2 and f1 (b) f3 and f1  / Case 3 

5.4 Case 4 

In this case, the fitness function was the sum of all the three terms (f1, f2 and f3) 

which were at the same order and balanced. First of all, as far as the effectiveness of the 
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algorithms is concerned, the gradient based wasn’t able to find a “good” optimal solution, 

getting trapped probably in a local minimum. This conclusion is verified by the fact that all 

the design variables reached the lower bounds without giving a proper solution, while the 

optimization process ended in only 43 seconds. Due to the multi-objective character of this 

case it’s difficult to understand which optimization scenarios converged to the “best” 

optimal solutions. On the other hand, the differences in the optimal design variables in every 

optimization scenario have to be mentioned. In contrary with the previous cases, none of the 

optimal design variables are close enough to indicate the same characteristics of the 

solutions, but Table 12, based on the values of important parameters of the vehicle model, 

points out some common characteristics between optimization scenarios of S2-S4, such as 

the maximum suspension travels and the maximum tire forces indicating probably common 

characteristics to the solutions. 

 

Table 11 Optimal Solutions of Design Variables / Case 4 

Design Variables 
Optimization Scenarios 

S1 S2 S3 S4 S5 

KlF
(N/m) 81307 46116 63116 42377 32000 

CF(N⋅s/m) 5431 4129 3645 4002 2000 

KlR
(N/m) 57264 45371 66731 60069 32000 

CR(N⋅s/m) 2877 5301 2753 3693 2000 

KnlF
(N/m

3
) 2.12*10

7
 6.24*10

6
 1.78*10

7
 1.36*10

7
 5.00*10

6
 

KnlR
(N/m

3
) 9.52*10

6
 2.73*10

7
 3.47*10

7
 2.86*10

7
 1.08*10

7
 

 

Table 12 Vehicle Model’s Parameters for the Optimal Solutions / Case 4 

Vehicle Model’s Parameters 
Optimization Scenarios 

S1 S2 S3 S4 S5 

RMS(accbody) (m/s2) 0.666 0.611 0.635 0.589 0.370 

Max. Suspension Travel Front (m) 0.028 0.033 0.031 0.031 0.039 

Max. Suspension Travel Rear  (m) 0.033 0.027 0.028 0.029 0.048 

Max. Tire Force Front (N) 3704 3096 3270 2802 2103 

Max. Tire Force Rear  (N) 2805 2785 2937 3105 3086 

Nonlinear % of Front Spring Force 17 13 21 24 12 

Nonlinear % of Rear  Spring Force 15 30 29 29 17 

5.5 Case 5 

In this case, the fitness function was the sum of all the three terms (f1, f2 and f3) 

where the main term was f1 and the other two were set one order of magnitude lower. The 

main idea in this case was the use of the two targets more as penalties rather than targets of 

the optimization; this is the reason why f2 and f3 were one order of magnitude lower. First of 

all, regarding the effectiveness of the algorithms, the gradient based seems to concentrate to 

optimize only the term f1, which depicts the ride comfort, ignoring the multi-objective 
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character of this fitness function and failing to find a “good” optimal solution. This problem 

is also pointed out in the design variables of this optimization scenario (S5) in which some 

of them are trapped in the upper or lower bounds, as well as the time the problem needed to 

converge. The results of this case, regarding the gradient based algorithm, prove the 

conclusions indicated above regarding the effectiveness of the algorithm. As far as the other 

optimization scenarios are concerned, due to the multi-objective character of this case it is 

difficult to understand which optimization scenarios converged to the “best” optimal 

solutions. Moreover, in contrary with the previous case, neither the optimal design variables 

in every optimization scenario nor the table of the important parameters of vehicle’s model 

could indicate similar characteristics in the optimal solutions. 

 

Table 13 Optimal Solutions of Design Variables / Case 5 

Design Variables 
Optimization Scenarios 

S1 S2 S3 S4 S5 

KlF
(N/m) 59559 49457 43581 37635 44761 

CF(N⋅s/m) 2414 2164 5312 2096 2000 

KlR
(N/m) 58680 56541 45694 65343 45798 

CR(N⋅s/m) 3901 6281 1910 4616 2000 

KnlF
(N/m

3
) 1.25*10

7
 5.72*10

6
 2.42*10

7
 5.09*10

6
 7.56*10

6
 

KnlR
(N/m

3
) 4.34*10

7
 4.40*10

7
 5.89*10

6
 3.32*10

7
 3.56*10

6
 

 

Table 14 Vehicle Model’s Parameters for the Optimal Solutions / Case 5 

Vehicle Model’s Parameters 
Optimization Scenarios 

S1 S2 S3 S4 S5 

RMS(accbody) (m/s
2
) 0.605 0.587 0.538 0.538 0.466 

Max. Suspension Travel Front (m) 0.038 0.040 0.026 0.038 0.040 

Max. Suspension Travel Rear  (m) 0.024 0.023 0.036 0.029 0.038 

Max. Tire Force Front (N) 3556 3070 2829 2433 2836 

Max. Tire Force Rear  (N) 2549 2944 3154 3367 3302 

Nonlinear % of Front Spring Force 23 16 27 16 21 

Nonlinear % of Rear  Spring Force 30 30 14 30 10 

6. DISCUSSION 

In order to compare all the optimal solutions retrieved with all the optimization 

Scenarios and all Cases, the optimal design points retrieved with Cases 1 - 3 and 5 were 

scaled to Case 4. Case 4 was selected as the ground Case due to its multi - objective 

character. In more details, the vehicle model was simulated with each set of the optimal 

design variables and the terms f1, f2 and f3 have been recalculated and hence the optimal 

value of the fitnesses based on Case 4, leading to the comparison presented in Figure 6 and 

Table 15. In Figure 6, the fitness’ value of each optimization scenario (S1-S5 (different 

group of columns)) is compared for all the cases (Case 1-5 (columns of different color)). In 
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the Table of data of the figure, the optimum solution for every Case is pointed out in borders 

of the corresponding color. The comparison of the fitness’ values is performed horizontally. 

In addition, Table 15 presents the values of the terms f1,f2 and f3 as well as the sum of them 

for the optimum solution for each case, in addition with the optimization scenario in which 

it was found. The sum of the terms is the fitness values of the optimal solutions scaled to 

Case 4 and also presented in the data table of Figure 6.  

 

 

Figure 6 Comparsion of the Optimal Solutions based on the values of Optimal Fitnesses 

Table 15 Comparison of the Fitness Values of the Optimal Solutions 

Terms 
Case 1 Case 2 Case 3 Case 4 Case 5 

S5 S4 S1 S4 S3 

f1 0.221 0.7921 0.4042 0.3466 0.2758 

f2 1.15 0.536 0.8685 0.8532 0.963 

f3 0.241 0.609 0.315 0.2994 0.338 

f1+f2+f3 1.612 1.9371 1.5877 1.4992 1.5768 

 

Table 16 Comparison of the Design Variables of the Optimal Solutions 

Design Variables 
Case 1 Case 2 Case 3 Case 4 Case 5 

S5 S4 S1 S4 S3 

𝐾𝑙𝐹
(N/m) 36194 38952 41279 42377 43581 

𝐶𝐹(N⋅s/m) 2582 8003 3632 4002 5312 

𝐾𝑙𝑅
(N/m) 39741 47540 77718 60069 45694 

𝐶𝑅(N⋅s/m) 3228 8286 4319 3693 1910 
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𝐾𝑛𝑙𝐹
(N/m3) 1.03*107 2.56*107 1.44*107 1.36*107 2.42*107 

𝐾𝑛𝑙𝑅
(N/m3) 1.18*107 1.60*107 5.00*107 2.86*107 5.89*106 

 

At first, regarding the optimum solution of all the results, based on Table 15 and 

Figure 6, could be found in Case 4/S4 which was expected because Case 4 was the ground 

case for comparison of the optimal solutions. The next two near the optimum solution, were 

the one of Case 5/S3 as well as the one of Case 3/S1. Based on Table 15, the close values of 

the terms f1, f2 and f3 of Case 4/S4 and Case 3/S1 show that they have converged to almost 

the same solution in combination with the optimal design variables of these solutions, as 

shown in Table 16. The only difference in the design variables of these two solutions is the 

stiffness of the rear suspension system which lead to the slightly higher term f1, which 

depicts the ride comfort, in Case 3/S1 (0.4042) than Case 4/S4 (0.3466). On the other hand, 

Case 5/S3 appears to have converged to a different family of solutions. More specifically, in 

Case 5/S3 the rear suspension system is configured to lower values of the stiffness of the 

spring and of the damping coefficient than the optimal solutions of the other cases, as shown 

in Table 15, improving the ride comfort by decreasing term f1 and increasing term f2, 

representing the ride comfort and the suspension travel respectively, as shown in Table 16. 

Furthermore, Case 5/S3 achieved a solution better than this of the single objective of term f1 

(Case 1/S5), but slightly worse than the multi-objective with f1, f2 and f3 balanced (Case 

4/S4). This suggests that using the terms f2 and f3 as penalties, the optimization prioritizes 

the main term taking slightly into consideration the other two, leading to a middle ground 

solution. This is why the optimum solution of Case 5 is a combination of the characteristics 

of Case 1/S5 and Case 4/S4. 

Regarding the optimization scenarios, the Hybrid Algorithm was the leading 

method either with population 200 (S3) or 1000 (S4), outnumbering the other methods, as 

shown in Table 15, where the three of the five optimal solutions are found through hybrid 

algorithms. Secondly, the gradient based algorithm proved its reliability in Case 1 and Case 

3 in contrary to the other cases in which it failed. Based on the discussion in Cases 1-3, the 

gradient based algorithm (S5) could deliver acceptable results only when the RMS of 

vehicle’s body acceleration is connected directly and straight forward with the target of the 

optimization. This is the reason of its effectiveness in Case 3, where the fitness function, 

which depicts the average of both the front and rear tire deflections (f3), increases or 

decreases according to the increase or the decrease of the RMS of vehicle’s body 

acceleration, which depicts the ride comfort (f1), as shown in Figures 3b-5b. 

As far as the different Cases are concerned, based on the data table of Figure 6, 

Case 3 seems to be superior than Case 1 due to the fact that the optimal values of the 

fitnesses in the line of Case 3 are always lower than the ones of Case 1, regardless the 

optimization scenarios. Moreover, in all the optimization scenarios, Case 3 not only 

delivered more satisfactory optimal solutions than Case 1 but also converged in much less 

computational time, lowering it by 10-40% depending on the optimization scenario. The 

argument regarding the superiority of Case 3, is validated from the fact that it delivered one 

of the most satisfactory optimal solution in comparison with the results of Case 4, as 

explained in the previous paragraphs in detail. Combining the above points, Case 3 converge 

to solutions taking into consideration not only the increase of the ride comfort but also the 

minimization of the suspension travel, indicating a multi-objective character despite having 

a single-objective fitness function. Moreover, based on Figure 6, Case 3 seems to be stable 

in providing satisfactory optimal results in comparison with all the other cases which 

sometimes fail to deliver depending the optimization scenario. 
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6. CONCLUSIONS 

To sum up, in the current paper the optimization of a heavy vehicle’s suspension 

system were investigated setting different optimization targets. Conclusions have been made 

not only regarding the fitness functions but also for the optimization methods used in order 

to reach the optimum solution more accurately and with less computational time. The 

remarks regarding Case 3, discussed in the previous section, outline the importance of tire 

deflection being a part of the fitness function due to the superiority of Case 3 over Case 1. 

Due to its multi-objective character, Case 3 seems to outnumber Case 1, which is the most 

common main term of fitness functions in literature as far as the optimization of suspension 

systems is concerned. This could lead to the use of the tire deflection, as the main target in 

the optimization of suspension systems in combination with various existing methods of the 

literature mentioned in the introduction. Furthermore, the effectiveness of the hybrid 

algorithm proved promising in comparison with the other algorithms. They were able to find 

more satisfactory solutions in most cases and with less computational time than the other 

algorithms. The most important regarding the hybrid algorithms is the need of finding the 

balance between the use of its genetic and gradient based parts so as to gain more from the 

hybridization and help the problem to converge in less time. Further work is in progress to 

extend our research. 
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